
erwin Data Modeler

Data Modeling Overview
Release 15.0

Legal Notices
This Documentation, which includes embedded help systems and electronically distributed mater-
ials (hereinafter referred to as the “Documentation”), is for your informational purposes only and
is subject to change or withdrawal by Quest Software, Inc and/or its aff i l iates at any t ime. This
Documentation is proprietary information of Quest Software, Inc and/or its aff i l iates and may not
be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,
without the prior written consent of Quest Software, Inc and/or its aff i l iates

If you are a l icensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for
internal use by you and your employees in connection with that software, provided that all Quest
Software, Inc and/or its aff i l iates copyright notices and legends are aff ixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is l imited to the
period during which the applicable l icense for such software remains in full force and effect.
Should the l icense terminate for any reason, it is your responsibil i ty to certify in writ ing to Quest
Software, Inc and/or its aff i l iates that all copies and partial copies of the Documentation have
been returned to Quest Software, Inc and/or its aff i l iates or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, QUEST SOFTWARE, INC. PROVIDES
THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT
LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL QUEST SOFTWARE,
INC. BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR
INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION,
LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST
DATA, EVEN IF QUEST SOFTWARE, INC. IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable
l icense agreement and such l icense agreement is not modified in any way by the terms of this
notice.

The manufacturer of this Documentation is Quest Software, Inc and/or its aff i l iates.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Govern-
ment is subject to the restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)
(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2025 Quest Software, Inc and/or its aff i l iates All r ights reserved. All trademarks,
trade names, service marks, and logos referenced herein belong to their respective companies.

Contact erwin
Understanding your Support

Review support maintenance programs and offerings .

Registering for Support

Access the erwin support site and register for product support.

Accessing Technical Support

For your convenience, erwin provides easy access to "One Stop" support for all edit ions of
erwin Data Modeler , and includes the following:

Online and telephone contact information for technical assistance and customer services

Information about user communities and forums

Product and documentation downloads

erwin Support policies and guidelines

Other helpful resources appropriate for your product

For information about other erwin products, visit erwin by Quest Products page .

Provide Feedback

I f you have comments or questions, or feedback about erwin product documentation, you can
send a message to techpubs@erwin.com .

News and Events

Visit News and Events to get up-to-date news, announcements, and events. View video demos
and read up on customer success stories and articles by industry experts.

https://www.quest.com/products/
https://support.quest.com/contact-support
https://support.quest.com/erwin-data-modeler/15.0
https://erwin.com/products
mailto:techpubs@erwin.com
https://www.erwin.com/resources/#f:events=[Events - Online,Events - Webcast On Demand]&f:language=[English]

Contents

Introduction 8

Benefits of Data Modeling 9

Methods 10

Typographical Conventions 11

Information Systems, Databases, and Models 12

Data Modeling 13

Data Modeling Sessions 15

Session Roles 16

Sample IDEF1X Modeling Methodology 17

Modeling Architecture 19

Logical Models 21

Entity Relationship Diagram 22

Key-Based Model 23

Fully-Attributed Model 24

Physical Models 25

Transformation Model 26

DBMS Model 27

Logical Models 28

Constructing a Logical Model 29

Entity Relationship Diagram 30

Entities and Attributes Defined 31

Logical Relationships 33

Many-to-Many Relationships 34

Logical Model Design Validation 36

Data Model Example 37

The Key-Based Data Model 39

Key Types 41

Entity and Non-Key Areas 42

Primary Key Selection 43

Alternate Key Attributes 45

Inversion Entry Attributes 46

Relationships and Foreign Key Attributes 47

Dependent and Independent Entities 48

Identifying Relationships 49

Nonidentifying Relationships 50

Rolenames 51

Naming and Defining Entities and Attributes 53

Entity and Attribute Names 54

Synonyms, Homonyms, and Aliases 55

Entity Definitions 56

Descriptions 57

Business Examples 58

Comments 59

Definition References and Circularity 60

Business Glossary Construction 61

Attribute Definitions 62

Validation Rules 63

Rolenames 64

Definitions and Business Rules 66

Relationships 67

Relationship Cardinality 68

Cardinality in Nonidentifying Relationships 70

Referential Integrity 71

RI, Cardinality, and Identifying Relationships 74

Additional Relationship Types 75

Many-to-Many Relationships 76

N-ary Relationships 78

Recursive Relationships 80

Subtype Relationships 82

Complete Compared to Incomplete Subtype Structures 84

Benefits of Data Modeling 85

IDEF1X and IE Subtype Notation 86

When to Create a Subtype Relationship 87

Normalization Problems and Solutions 88

Normalization 89

Overview of the Normal Forms 90

Common Design Problems 91

Repeating Data Groups 92

Multiple Use of the Same Attribute 94

Multiple Occurrences of the Same Fact 97

Conflicting Facts 98

Derived Attributes 101

Missing Information 102

Unification 104

How Much Normalization Is Enough 106

Support for Normalization 109

First Normal Form Support 110

Second and Third Normal Form Support 111

Physical Models 112

Objective 113

Support for the Roles of the Physical Model 114

Summary of Logical and Physical Model Components 115

Denormalization 117

Classification of Dependent Entities 118

Glossary 119

Data Modeling Overview Guide 8

Introduction
While data modeling can be complex, this Overview Guide can help Data Architects understand
data modeling and its uses.

Overall, this guide has the following purposes:

Provide a basic level of understanding of the data modeling method used by erwin� Data
Modeler that is sufficient to do real database design.

Introduce some of the descriptive power and richness of the IDEF1X and IE modeling lan-
guages supported, and to provide a foundation for future learning.

Provide information about the supported features of IDEF1X and IE in erwin� Data Modeler,
and the mapping between these methods.

Introduction

Data Modeling Overview Guide 9

Benefits of Data Modeling

Regardless of the DBMS you use or the types of data models you want to develop, modeling your
database in erwin� Data Modeler has many benefits:

Enables usage by database and application development staff to define system require-
ments and to communicate among themselves and with end users.

Provides a clear picture of referential integrity constraints. Maintaining referential integrity is
essential in the relational model where relationships are encoded implicitly.

Provides a logical RDBMS-independent picture of your database that automated tools can
use to generate RDBMS-specific information. This way, you can use a single diagram to
generate Db2 table schemas, and schemas for other relational DBMSs.

Lets you produce a diagram summarizing the results of your data modeling efforts and gen-
erate a database schema from that model.

Benefits of Data Modeling

Data Modeling Overview Guide 10

Methods

erwin� Data Modeler supports two methods of data modeling:

IDEF1X

The United States Air Force developed the IDEF1X method. The IDEF1X method is now
used in various governmental agencies, in the aerospace and financial industry, and in a
wide variety of major corporations.

IE (Information Engineering)

James Martin, Clive Finkelstein, and other IE authorities developed the IE method, which is
widely deployed in various industries.

Both methods are suited to environments where large-scale, rigorous, enterprise-wide data mod-
eling is essential.

Methods

Data Modeling Overview Guide 11

Typographical Conventions

The following table describes the typographical conventions used in this guide to identify key
terms:

Text Item Convention Example

Entity
Name

All uppercase, followed by the word "entity"
in lowercase

MOVIE COPY entity

Attribute
Name

All lowercase in quotation marks "movie name"

Column
Name

All lowercase movie_name

Table
Name

All uppercase MOVIE_COPY

Verb
Phrase

All lowercase in angle brackets <is available for
rental as>

Typographical Conventions

Data Modeling Overview Guide 12

Information Systems, Databases, and Models
This section contains the following topics

Data Modeling
Data Modeling Sessions
Sample IDEF1X Modeling Methodology
Modeling Architecture
Logical Models
Physical Models

Information Systems, Databases, and Models

Data Modeling Overview Guide 13

Data Modeling

Data modeling

Data modeling is the process of describing information structures and capturing business
rules to specify information system requirements. Data models represent a balance
between the specific needs of an RDBMS implementation project, and the general needs of
the business area that requires it.

When created with the full participation of business and systems professionals, the data model can
provide many benefits. These benefits generally fall into the following two classes:

Effort

The staff associated with the process of creating the model.

Product of the Effort

The staff primarily associated with the model.

Examples of Product Benefits

A data model is independent of implementation, so it does not require that the imple-
mentation is in any particular database or programming language.

A data model is an unambiguous specification of what is wanted.

The model is business user-driven. The business client controls the content and structure of
the model, rather than the system developer. The emphasis is on requirements rather than
constraints or solutions.

The terms used in the model are stated in the language of the business, not that of the sys-
tem development organization.

The model provides a context to focus your discussions about what is important to the busi-
ness.

Examples of Process Benefits

During early project phases, model development sessions bring together individuals from
many parts of the business. The sessions provide a structured forum where business needs
and policies are discussed. Business staff typically meets others for the first time, and meets
others in different parts of the organization who are concerned with the same needs.

Data Modeling

Data Modeling Overview Guide 14

Sessions lead to development of a common business language with consistent and precise
definitions of terms used. Communication among participants is greatly increased.

Early phase sessions provide a mechanism for exchanging large amounts of information
among business participants and transferring much business knowledge to the system
developers. Later phase sessions continue that transfer of knowledge to the staff who will
implement the solution.

Session participants are better able to see how their activities fit into a larger context. Also,
parts of the project can be seen in the context of the whole. The emphasis is on cooperation
rather than separation. Over time, cooperation leads to a shift in values, and the rein-
forcement of a cooperative philosophy.

Sessions foster consensus and build teams.

Design of the data structures to support a business area is only one part of developing a system.
Function modeling, the analysis of processes (function) is equally important. Function models
describe how something is done. They can be presented as hierarchical decomposition charts,
data flow diagrams, HIPO diagrams, and so on. Developing both your function models and data
models at the same time is important. Discussion of the functions that the system performs uncov-
ers the data requirements. Discussion of the data typically uncovers additional function require-
ments. Function and data are the two sides of the system development coin.

Data Modeling

Data Modeling Overview Guide 15

Data Modeling Sessions

Creating a data model involves not only model construction, but also many fact-finding sessions
(meetings) to uncover the data and processes used by a business. Running good sessions, like
running good meetings of any kind, depends on preparation and real-time facilitation techniques.
In general, include the right mix of business and technical experts, and facilitate the modeling ses-
sions. Schedule modeling sessions in advance, carefully plan to cover sets of focused material,
and orchestrate it in a way to achieve the results you require.

When possible, it is highly recommended that modeling of function and data be done at the same
time. Functional models tend to validate a data model and uncover new data requirements, and
helps ensure that the data model supports function requirements.

Data Modeling Sessions

Data Modeling Overview Guide 16

Session Roles

Formal, guided sessions, with defined roles for participants and agreed upon procedures and
rules, are an absolute requirement. The following roles work well:

Facilitator

A facilitator acts as the session guide and is responsible for:

Arranging the meetings and facilities

Providing follow-up documentation

Intervening during sessions, as necessary, to keep sessions on track and to control
the scope of the session.

Data Architect

Leads the group through the process of developing and validating the model. A data archi-
tect develops the model, in real time if possible, in front of the group. The data architect asks
pertinent questions that bring out the important details and records the resulting structure for
all to see. The same individual can fill both facilitator and data architect roles, although it can
be difficult.

Data Analyst

Acts as the scribe for the session and records the definitions of all the entities and attributes
that make up the model. Using the information from the business experts, the data analyst
can also begin to package entities and attributes into subject areas. Subject areas are
simply manageable and meaningful subsets of the complete data model.

Subject Matter Expert

Provides the business information necessary to construct the model. You can have more
than one subject matter expert. They are business experts, not systems experts.

Manager

Participates in the sessions in an assigned role (such as facilitator or subject matter expert)
and keeps the process moving. The manager has the responsibility of �breaking ties� but
only when necessary. The manager can be from either the systems or business community.

Session Roles

Data Modeling Overview Guide 17

Sample IDEF1X Modeling Methodology

erwin� Data Modeler was developed to support the IDEF1X and IE modeling standards. The use
of various levels of models within the IDEF1X method can be helpful in developing a system. Gen-
eral model levels are outlined in the IDEF1X standard. In practice, you can expand or contract the
number of levels to fit individual situations.

Model levels generally span from a wide view to a narrow view, depending on project require-
ments. A wide but not too detailed view can include only the major entities that are important to a
business. A narrow view can include a level of precision required to represent the database design
in terms understandable by a particular DBMS. At the lowest level of detail, models are tech-
nology-dependent. For example, a model for an IMS database looks different from a model for a
Db2 database. At higher levels, models are technology independent and can represent information
that is not stored in any automated system.

The modeling levels presented are suited to a top-down system development lifecycle approach,
where successive levels of detail are created during each project phase.

The highest level models come in two forms:

Entity Relationship Diagram (ERD)

Identifies major business entities and their relationships.

Key-Based (KB)

Sets the scope of the business information requirement (all entities are included) and begins
to expose the detail.

The lower-level models also come in two forms:

Fully-Attributed (FA)

Represents a third normal form model that contains all of the detail for a particular imple-
mentation effort.

Transformation Model (TM)

Represents a transformation of the relational model into a structure, which is appropriate to
the DBMS chosen for implementation. The TM, in most cases, is no longer in third normal
form. The structures are optimized based on the capabilities of the DBMS, the data
volumes, and the expected access patterns and rates against the data. In a way, a TM is a
picture of the eventual physical database design.

DBMS Model

Sample IDEF1X Modeling Methodology

Data Modeling Overview Guide 18

The database design is contained in the DBMS Model for the system. The DBMS Model can
be a project level model or an area level model for the entire integrated system.

Sample IDEF1X Modeling Methodology

Data Modeling Overview Guide 19

Modeling Architecture

Five modeling levels are presented in the following illustration. Notice that the DBMS model can be
at either an Area Level scope, or a Project Level scope. It is not uncommon to have single ERD
and KB models for a business, and multiple DBMS models. You can have one DBMS model for
each implementation environment, and another set within that environment for projects that do not
share databases. In an ideal situation, there is a set of Area Level scope DBMS models. One Area
Level scope DBMS model for each environment, with complete data sharing across all projects in
that environment.

The models fall into two categories:

Logical

Physical

Modeling Architecture

Data Modeling Overview Guide 20

Modeling Architecture

Data Modeling Overview Guide 21

Logical Models

There are three levels of logical models that are used to capture business information require-
ments:

Entity Relationship diagram

Key-Based model

Fully-Attributed model

The Entity Relationship diagram and the Key-Based models are also known as area data models.
They often cover a wide business area that is larger than the business chooses to address with a
single automation project. In contrast, the Fully-Attributed model is a project data model. Typically
it describes a portion of an overall data structure intended for support by a single automation effort.

Logical Models

Data Modeling Overview Guide 22

Entity Relationship Diagram

The Entity Relationship diagram (ERD) is a high-level data model that shows the major entities
and relationships, which support a wide business area. An ERD is primarily a presentation or dis-
cussion model.

The ERD objective is to provide a view of business information requirements to satisfy the need for
broad planning for development of its information system. These models are not detailed (only
major entities are included), and not much detail, if any, on attributes. Many-to-many (nonspecific)
relationships are allowed, and keys are generally not included.

Entity Relationship Diagram

Data Modeling Overview Guide 23

Key-Based Model

A key-based (KB) model describes the major data structures, which support a wide business area.
All entities and primary keys are included with sample attributes.

The objective of the KB model is to provide a broad business view of data structures and keys
required to support the area. A KB model provides a context where detailed implementation level
models can be constructed. The model covers the same scope as the Area ERD, but exposes
more of the detail.

Key-Based Model

Data Modeling Overview Guide 24

Fully-Attributed Model

A fully-attributed (FA) model is a third normal form data model that includes all entities, attributes,
and relationships required by a single project. The model includes entity instance volumes, access
paths and rates, and expected transaction access patterns across the data structure.

Fully-Attributed Model

Data Modeling Overview Guide 25

Physical Models
Two levels of physical models exist for an implementation project:

Transformation model

DBMS model

The physical models capture all of the information that data architects and database admin-
istrators require to implement a logical model as a database system. The Transformation model is
also a project data model that describes a portion of an overall data structure supported by a single
automation effort. Individual projects within a business area are supported, allowing the modeler to
separate a larger area model into subject areas. Subject areas can be developed, reported on, and
generated to the database in isolation from the area model and other subject areas in the model.

This section contains the following topics

Transformation Model
DBMS Model

Physical Models

Data Modeling Overview Guide 26

Transformation Model

The objectives of the Transformation model include:

Provide the database administrator with sufficient information to create an efficient physical
database

Provide a context for the definition and recording of the data elements

Hold the records that form the database in the data dictionary

Help the application team select a physical structure for the programs that will access the
data.

During the development effort, the model can also provide the basis for comparing the physical
database design against the original business information requirements to:

Demonstrate that the physical database design adequately supports those requirements.

Document physical design choices and their implications, such as what is satisfied, and
what is not.

Identify database extensibility capabilities and constraints.

Transformation Model

Data Modeling Overview Guide 27

DBMS Model

The Transformation model directly translates into a DBMS model, which captures the physical
database object definitions in the RDBMS schema or database catalog. The schema generation
function directly supports this model. Primary keys become unique indexes. Alternate keys and
inversion entries can also become indexes. Cardinality can be enforced either through the ref-
erential integrity capabilities of the DBMS, application logic, or �after the fact� detection and repair
of violations.

DBMS Model

Data Modeling Overview Guide 28

Logical Models
This section contains the following topics

Constructing a Logical Model
Entity Relationship Diagram
Logical Model Design Validation
Data Model Example

Logical Models

Data Modeling Overview Guide 29

Constructing a Logical Model

The first step in constructing a logical model is developing the Entity Relationship diagram (ERD),
a high-level data model of a wide business area. An ERD is made up of three main building blocks:
entities, attributes, and relationships. A diagram can be viewed as a graphical language for
expressing statements about your business. Entities are the nouns, attributes are the adjectives or
modifiers, and relationships are the verbs. Building a data model is simply a matter of putting
together the right collection of nouns, verbs, and adjectives.

The objective of the ERD is to provide a broad view of business information requirements sufficient
to plan for development of the business information system. ERD models are not detailed (only
major entities are included) and there is not much detail, if any, about attributes. Many-to-many
(nonspecific) relationships are allowed and keys are generally not included. An ERD model is
primarily a presentation or discussion model.

An ERD can be divided into subject areas, which are used to define business views or specific
areas of interest to individual business functions. Subject areas help reduce larger models into
smaller, more manageable subsets of entities that can be more easily defined and maintained.

Many methods are available for developing the ERD. These range from formal modeling sessions
to individual interviews with business managers who have responsibility for wide areas.

Constructing a Logical Model

Data Modeling Overview Guide 30

Entity Relationship Diagram

The Entity Relationship diagram (ERD) is a high-level data model that shows the major entities
and relationships, which support a wide business area. An ERD is primarily a presentation or dis-
cussion model.

The ERD objective is to provide a view of business information requirements to satisfy the need for
broad planning for development of its information system. These models are not detailed (only
major entities are included), and not much detail, if any, on attributes. Many-to-many (nonspecific)
relationships are allowed, and keys are generally not included.

Entity Relationship Diagram

Data Modeling Overview Guide 31

Entities and Attributes Defined

An entity is any person, place, thing, event, or concept about which information is kept. More pre-
cisely, an entity is a set or collection of like individual objects known as instances. An instance
(row) is a single occurrence of a given entity. Each instance must have an identity distinct from all
other instances.

In the preceding illustration, the CUSTOMER entity represents the set of all the possible cus-
tomers of a business. Each instance of the CUSTOMER entity is a customer. You can list inform-
ation for an entity in a sample instance table, such as is shown in the following illustration:

CUSTOMER

customer id customer name customer address

10001 Ed Green Princeton, NJ

10011 Margaret Henley New Brunswick, NJ

10012 Tomas Perez Berkeley, CA

17886 Jonathon Walters New York, NY

10034 Greg Smith Princeton, NJ

Each instance represents a set of facts about the related entity. In the preceding table, each
instance of the CUSTOMER entity includes information about the �customer id,� �customer
name,� and �customer address.� In a logical model, these properties are known as the attributes
of an entity. Each attribute captures a single piece of information about the entity.

You can include attributes in an ERD to describe the entities in the model more fully, as shown in
the following illustration:

Entities and Attributes Defined

Data Modeling Overview Guide 32

Entities and Attributes Defined

Data Modeling Overview Guide 33

Logical Relationships

Relationships represent connections, links, or associations between entities. They are the verbs of
a diagram that show how entities relate to each other. Easy to understand rules help business pro-
fessionals validate data constraints and ultimately identify relationship cardinality.

Examples of one-to-many relationships:

A TEAM <has> many PLAYERs

A PLANE FLIGHT <transports> many PASSENGERs

A DOUBLES TENNIS MATCH <requires> exactly 4 PLAYERs

A HOUSE <is owned by> one or more OWNERs

A SALESPERSON <sells> many PRODUCTs

In all of these cases, the relationships are chosen so that the connection between the two entities
is what is known as one-to-many. A one-to-many means that one (and only one instance) of the
first entity is related or connected to many instances of the second entity. The entity on the one-
end is known as the parent entity. The entity on the many-end is known as the child entity.

Relationships are displayed as a line connecting two entities, with a dot on one end, and a verb
phrase written along the line. In the previous examples, the verb phrases are the words inside the
brackets, such as <sells>. The following figure shows the relationship between PLANE FLIGHTs
and PASSENGERs on that flight:

Logical Relationships

Data Modeling Overview Guide 34

Many-to-Many Relationships

In key-based and fully-attributed models, relationships must relate zero or one instances in a par-
ent entity to a specific set of instances in a child entity. As a result of this rule, many-to-many rela-
tionships that were discovered and documented in an ERD or earlier modeling phase must be
broken down into a pair of one-to-many relationships.

This figure shows a many-to-many relationship between STUDENTs and COURSEs. If you did not
eliminate the many-to-many relationship between COURSE and STUDENT, the key of COURSE
would be included in the key of STUDENT, and the key of STUDENT would be included in the key
of COURSE. Since COURSEs are identified by their own keys, and likewise for STUDENTs this,
creates an endless loop.

You can eliminate a many-to-many relationship by creating an associative entity. In the following
figure, the many-to-many relationship between STUDENT and COURSE is resolved by adding the
COURSE-ROSTER entity.

COURSE-ROSTER is an associative entity, which means it is used to define the association
between two related entities.

Many-to-many relationships often hide meaning. In the diagram with a many-to-many relationship,
you know that a STUDENT enrolls in many COURSEs, but no information is included to show how.
When you resolve the many-to-many relationship, you see not only how the entities are related,
but uncover additional information, such as the �course-time,� which also describes facts about
the relationship.

Many-to-Many Relationships

Data Modeling Overview Guide 35

Once the many-to-many relationship is resolved, you are faced with the requirement to include rela-
tionship verb phrases that validate the structure. There are two ways to do this: construct new verb
phrases or use the verb phrases as they existed for the many-to-many relationship. The most
straightforward way is to continue to read the many-to-many relationship, through the associative
entity. Therefore, you can read A STUDENT <enrolls in> many COURSEs and A COURSE <is
taken by> many STUDENTs. Many modelers adopt this style for constructing and reading a
model.

There is another style, which is equally correct, but a bit more cumbersome. The structure of the
model is exactly the same, but the verb phrases are different, and the model is read in a slightly dif-
ferent way:

You would read: A STUDENT <enrolls in a COURSE recorded in> one or more COURSE-
ROSTERs, and A COURSE <is taken by a STUDENT recorded in> one or more COURSE-
ROSTERs.Although the verb phrases are now quite long, the reading follows the standard pattern;
reading directly from the parent entity to the child.

Whichever style you choose, be consistent. Deciding how to record verb phrases for many-to-
many relationships is not too difficult when the structures are fairly simple, as in these examples.
However, this can become more difficult when the structures become more complex, such as
when the entities on either side of the associative entities are themselves associative entities,
which are there to represent other many-to-many relationships.

Many-to-Many Relationships

Data Modeling Overview Guide 36

Logical Model Design Validation

A data model exposes many of the business rules that describe the area being modeled. Reading
the relationships helps you validate that the design of the logical model is correct. Verb phrases
provide a brief summary of the business rules embodied by relationships. Although they do not pre-
cisely describe the rules, verb phrases do provide an initial sense of how the entities are con-
nected.

If you choose your verb phrases correctly, you can read a relationship from the parent to the child
using an active verb phrase.

Example:

A PLANE FLIGHT <transports> many PASSENGERs.

Verb phrases can also be read from the perspective of the child entity. You can often read from the
child entity perspective using passive verb phrases.

Example:

Many PASSENGERs <are transported by> a PLANE FLIGHT.

Verifying that each verb phrase in the model results in valid statements is a good practice. Reading
your model back to the business analysts and subject matter experts is a good way to verify that it
correctly captures the business rules.

Logical Model Design Validation

Data Modeling Overview Guide 37

Data Model Example

The following model of a database was constructed for a hypothetical video store:

The data model of the video store, with definitions of the objects presented on it, makes the fol-
lowing assertions:

A MOVIE is in stock as one or more MOVIE COPYs. Information recorded about a MOVIE
includes its name, a rating, and a rental rate. The general condition of each MOVIE COPY is
recorded.

The store's CUSTOMERs rent the MOVIE COPYs. A MOVIE RENTAL RECORD records
the information about the rental of a MOVIE COPY by a CUSTOMER. The same MOVIE
COPY can, over time, be rented to many CUSTOMERs.

Each MOVIE RENTAL RECORD also records a due date for the movie and a status indic-
ating whether it is overdue. Depending on a CUSTOMER's previous relationship with the

Data Model Example

Data Modeling Overview Guide 38

store, a CUSTOMER is assigned a credit status code that indicates whether the store
accepts checks or credit cards for payment, or accepts only cash.

The store's EMPLOYEEs are involved with many MOVIE RENTAL RECORDs, as specified
by an involvement type. There must be at least one EMPLOYEE involved with each record.
Because the same EMPLOYEE might be involved with the same rental record several times
on the same day, involvements are distinguished with a timestamp.

An overdue charge is sometimes collected on a rental of a MOVIE COPY. OVERDUE
NOTICEs remind a CUSTOMER to return a movie. An EMPLOYEE is sometimes listed on
an OVERDUE NOTICE.

The store keeps salary and address information about each EMPLOYEE. The store may
have to look up CUSTOMERs, EMPLOYEEs, and MOVIEs by name, rather than by num-
ber.

The data model example is relatively small, but it says a lot about the video rental store. You can
get an idea of what a database for the business can look like, and a good picture of the business.
Several different types of graphical objects are presented in this diagram. The entities, attributes,
and relationships, with the other symbols, describe our business rules. The following sections
describe what the different graphical objects mean, and how to use erwin� Data Modeler to create
your own logical and physical data models.

Data Model Example

Data Modeling Overview Guide 39

The Key-Based Data Model
A key-based (KB) model is a data model that fully describes all of the major data structures that
support a wide business area. The goal of a KB model is to include all entities and attributes that
are of interest to the business.

As its name suggests, a KB model also includes keys. In a logical model, a key identifies unique
instances within an entity. When implemented in a physical model, a key provides easy access to
the underlying data.

The key-based model basically covers the same scope as the Entity Relationship Diagram (ERD).
However, it exposes more of the detail, including the context where detailed implementation level
models can be constructed.

This section contains the following topics

Key Types
Primary Key Selection
Alternate Key Attributes
Inversion Entry Attributes
Relationships and Foreign Key Attributes

The Key-Based Data Model

Data Modeling Overview Guide 40

The Key-Based Data Model

Data Modeling Overview Guide 41

Key Types

Whenever you create an entity in your data model, one of the most important questions to ask is:
�How can a unique instance be identified?� To develop a correct logical data model, you uniquely
identify each instance in an entity.

In each entity in a data model, a horizontal line separates the attributes into two groups, key areas
and nonkey areas. The area above the line is the key area, and the area below the line is the non-
key area, or data area. The key area of CUSTOMER contains �customer id� and the data area
contains �customer name,� �customer address,� and �customer phone.�

Key Types

Data Modeling Overview Guide 42

Entity and Non-Key Areas

The key area contains the primary key for the entity. The primary key is a set of attributes used to
identify unique instances of an entity. The primary key can be comprised of one or more primary
key attributes, if the chosen attributes form a unique identifier for each instance in an entity.

An entity usually has many nonkey attributes, which appear below the horizontal line. A nonkey
attribute does not uniquely identify an instance of an entity. For example, a database can have mul-
tiple instances of the same customer name, which means that �customer name� is not unique.
"customer name" would probably be a nonkey attribute.

Entity and Non-Key Areas

Data Modeling Overview Guide 43

Primary Key Selection

Choosing the primary key of an entity is an important step that requires serious consideration.
Before you actually select a primary key, consider several attributes, which are referred to as can-
didate key attributes. Typically, the business user who knows the business and business data can
help identify candidate keys.

For example, to use the EMPLOYEE entity in a data model (and later in a database) correctly, you
uniquely identify instances. In the customer table, you could choose from several potential key
attributes including: the employee name, a unique employee number assigned to each instance of
EMPLOYEE, or a group of attributes, such as name and birth date.

The rules that you use to select a primary key from the list of all candidate keys are stringent. The
rules can be consistently applied across all types of databases and information. The rules state
that the attribute or attribute group must:

Uniquely identify an instance.

Never include a NULL value.

Not change over time. An instance takes its identity from the key. If the key changes, it is a
different instance.

Be as short as possible, to facilitate indexing and retrieval. If you must use a key that is a
combination of keys from other entities, verify that each part of the key adheres to the other
rules.

Example:

Consider which attribute you would select as a primary key from the following list of candidate keys
for an EMPLOYEE entity:

employee number

employee name

employee social security number

employee birth date

employee bonus amount

If you use the rules in the preceding list to find candidate keys for EMPLOYEE, you could compose
the following analysis of each attribute:

Primary Key Selection

Data Modeling Overview Guide 44

�employee number� is a candidate key because it is unique for all EMPLOYEEs

�employee name� is probably not a good candidate because multiple employees can have
the same name, such as Mary Jones.

�employee social security number� is unique in most instances, but every EMPLOYEE may
not have one.

The combination of �employee name� and �employee birth date� may work, unless there
is more than one John Smith born on the same date and employed by our company. This
combination could be a candidate key.

Only some EMPLOYEEs of our company are eligible for annual bonuses. Therefore, �em-
ployee bonus amount� can be expected to be NULL in many cases. As a result, it cannot be
part of any candidate key.

After analysis, there are two candidate keys. One is �employee number� and the other is the
group of attributes containing �employee name� and �employee birth date.� �employee number�
is selected as the primary key because it is the shortest and helps ensure uniqueness of instances.

When choosing the primary key for an entity, data architects often assign a surrogate key. A sur-
rogate key is an arbitrary number that is assigned to an instance to identify it within an entity
uniquely. �employee number� is an example of a surrogate key. A surrogate key is often the best
choice for a primary key. A surrogate key is short, can be accessed the fastest, and helps ensure
unique identification of each instance. The system can also automatically generate surrogate keys
so that numbering is sequential and does not include any gaps.

A primary key chosen for the logical model is not always the primary key used to access the table
efficiently in a physical model. The primary key can be changed to suit the needs and requirements
of the physical model and database at any point.

Primary Key Selection

Data Modeling Overview Guide 45

Alternate Key Attributes

After you select a primary key from a list of candidate keys, designate some or all of the remaining
candidate keys as alternate keys. Alternate keys are often used to identify the different indexes,
which are used to access the data quickly. In a data model, an alternate key is designated by the
symbol (AKn). n is a number that is placed after the attributes that form the alternate key group. In
the EMPLOYEE entity, �employee name� and �employee birth date� are members of the altern-
ate key group.

Alternate Key Attributes

Data Modeling Overview Guide 46

Inversion Entry Attributes

Unlike a primary key or an alternate key, an inversion entry is an attribute or set of attributes that
are commonly used to access an entity, but that may not result in finding exactly one instance of an
entity. In a data model, the symbol IEn is placed after the attribute.

For example, in addition to locating information in an employee database using an employee's
identification number, a business may want to search by employee name. Often, a name search
results in multiple records, which requires an additional step to find the exact record. By assigning
an attribute to an inversion entry group, a non-unique index is created in the database.

An attribute can belong to an alternate key group as well as an inversion entry group.

Inversion Entry Attributes

Data Modeling Overview Guide 47

Relationships and Foreign Key Attributes

A foreign key is the set of attributes that define the primary key in the parent entity. The set of attrib-
utes migrates through a relationship from the parent to the child entity. In a data model, a foreign
key is designated by the symbol (FK) after the attribute name. Notice the (FK) next to �team id� in
the following figure:

Relationships and Foreign Key Attributes

Data Modeling Overview Guide 48

Dependent and Independent Entities

As you develop your data model, you may discover certain entities that depend upon the value of
the foreign key attribute for uniqueness. For these entities, the foreign key must be a part of the
primary key of the child entity (above the line) to define each entity uniquely.

In relational terms, a child entity that depends on the foreign key attribute for uniqueness is named
a dependent entity. In IDEF1X notation, dependent entities are represented as round-cornered
boxes.

Entities that do not depend on any other entity in the model for identification are named inde-
pendent entities. In IE and IDEF1X, independent entities are represented as square-cornered
boxes.

Dependent entities are further classified as existence dependent, which means the dependent
entity cannot exist unless its parent does, and identification dependent, which means that the
dependent entity cannot be identified without using the key of the parent. Because PLAYERs can
exist if they are not on a TEAM, the PLAYER entity is identification-dependent, but not existence-
dependent.

In contrast, there are situations where an entity is existence-dependent on another entity. Consider
two entities: ORDER, which a business uses to track customer orders, and LINE ITEM, which
tracks individual items in an ORDER. The relationship between these two entities can be
expressed as An ORDER <contains> one or more LINE ITEMS. In this case, LINE ITEM is exist-
ence-dependent on ORDER, because it makes no sense in the business context to track LINE
ITEMS unless there is a related ORDER.

Dependent and Independent Entities

Data Modeling Overview Guide 49

Identifying Relationships

In IDEF1X notation, the type of the relationship that connects two entities enforces the concept of
dependent and independent entities. If you want a foreign key to migrate to the key area of the
child entity (and create a dependent entity as a result), you can create an identifying relationship
between the parent and child entities. A solid line connecting the entities indicates an identifying
relationship. In IDEF1X notation, the line includes a dot on the end nearest to the child entity, as
shown in the following figure:

In IE notation, the line includes a crow's foot at the end of the relationship nearest to the child
entity:

Standard IE notation does not include rounded corners on entities. Rounded entity corners are
an IDEF1X symbol included in IE notation to help ensure compatibility between methods.

There are advantages to contributing keys to a child entity through identifying relationships, such
as making some physical system queries more straightforward. However, there are also many dis-
advantages. Some advanced relational theory suggests that contribution of keys not occur in this
way. Instead, entity identification is attained through using a logical handle or surrogate key that
the system user does not see, in addition to the entity's primary key. Data architects who are inter-
ested in this relational theory are encouraged to review the work of E. F. Codd and C. J. Date.

Identifying Relationships

Data Modeling Overview Guide 50

Nonidentifying Relationships

A nonidentifying relationship also connects a parent entity to a child entity. But, when a nonidenti-
fying relationship connects two entities, the foreign key migrates to the nonkey area of the child
entity (below the line).

A dashed line connecting the entities indicates a nonidentifying relationship. If you connect the
TEAM and PLAYER entities in a nonidentifying relationship, the �team id� migrates to the nonkey
as shown in the following figure:

Because the migrated keys in a nonidentifying relationship are not part of the primary key of the
child, nonidentifying relationships do not result in any identification dependency. In this case,
PLAYER is considered an independent entity, just like TEAM.

However, the relationship can reflect existence dependency if the business rule for the relationship
specifies that the foreign key cannot be NULL (missing). If the foreign key must exist, this implies
that an instance in the child entity can only exist if an associated parent instance also exists.

Identifying and nonidentifying relationships are not a feature of the IE methodology. These rela-
tionships are included in your diagram as a solid or dashed relationship line to help ensure com-
patibility between IE and IDEF1X methods.

Nonidentifying Relationships

Data Modeling Overview Guide 51

Rolenames

When a foreign key is contributed to a child entity through a relationship, you can write a new or
enhanced definition for the foreign key attributes. The definition explains the foreign key attribute
usage in the child entity. Assign a rolename to the definition, especially when the same attribute is
contributed to the same entity more than once. Duplicated attributes can appear identical, but
because they serve two different purposes, they cannot have the same definition.

Consider the following example where FOREIGN EXCHANGE TRADE has two relationships to
CURRENCY.

The key of CURRENCY is �currency code,� which is the identifier of a valid CURRENCY that you
want to track. You can see from the relationships that one CURRENCY is �bought by� and one is
�sold by� a FOREIGN EXCHANGE TRADE.

You also see that the identifier of the CURRENCY (the �currency code�) is used to identify each
of the two CURRENCYs. The identifier of the one that is bought is named �bought currency
code.� The identifier of the one that is sold is named �sold currency code.� The rolenames show
that the attributes are not the same thing as �currency code.�

Trading a CURRENCY for the same CURRENCY at the same time and exchange rate is not
logical. For a given transaction, such as the instance of FOREIGN EXCHANGE TRADE, "bought
currency code� and �sold currency code� must be different. Providing different definitions to the
two rolenames captures the difference between the two currency codes.

Attribute/Rolename Attribute Definition

Rolenames

Data Modeling Overview Guide 52

currency code The unique identifier of a CURRENCY.

bought currency code The identifier (�currency code�) of the CURRENCY
bought by (purchased by) the FOREIGN EXCHANGE
TRADE.

sold currency code The identifier (�currency code�) of the CURRENCY
sold by the FOREIGN EXCHANGE TRADE.

The definitions and validations of the bought and sold codes are based on �currency code.� �cur-
rency code� is known as a base attribute.

IDEF1X standard dictates that if two attributes with the same name migrate from the same base
attribute to an entity, the attributes must be unified. The result of unification is a single attribute
migrated through two relationships. Because of the IDEF1X standard, foreign key attributes are
also automatically unified. If you do not want to unify migrated attributes, you can rolename the
attributes when you name the relationship, in the Relationship Editor.

Rolenames

Data Modeling Overview Guide 53

Naming and Defining Entities and Attributes
In data modeling, and in systems development in general, it is important to select clear and well
thought out names for objects. The results of your efforts become a clear, concise, and unam-
biguous model of a business area.

Naming standards and conventions are identical for all types of logical models, including both the
Entity Relationship diagrams (ERD) and Key-based (KB) diagrams.

This section contains the following topics

Entity and Attribute Names
Entity Definitions
Attribute Definitions
Rolenames
Definitions and Business Rules

Naming and Defining Entities and Attributes

Data Modeling Overview Guide 54

Entity and Attribute Names

The most important rule to remember when naming entities is that entity names are always sin-
gular. Singular entity names facilitate reading the model with declarative statements. For example,
"A FLIGHT <transports> zero or more PASSENGERs" and "A PASSENGER <is transported by>
one FLIGHT." When you name an entity, you are also naming each instance. For example, each
instance of the PASSENGER entity is an individual passenger, not a set of passengers.

Attribute names are also singular. "person name," "employee SSN," "employee bonus amount," for
example, are correctly named attributes. Naming attributes in the singular helps to avoid nor-
malization errors, such as representing more than one fact with a single attribute. The attributes
"employee child names" or "start or end dates" are plural, and highlight errors in the attribute
design.

A good rule to use when naming attributes is to use the entity name as a prefix. The rule here is:

Prefix qualifies

Suffix clarifies

Using this rule, you can easily validate the design and eliminate many common design problems.
For example, in the CUSTOMER entity, you can name the attributes "customer name," "customer
number," "customer address," and so on. Suppose you wanted to name an attribute "customer
invoice number." Use the rule to verify that the suffix "invoice number" tells you more about the pre-
fix "customer." Because it does not, move the attribute to a more appropriate location, such as
INVOICE.

Sometimes it is difficult to give an entity or attribute a name without first giving it a definition. As a
general principle, providing a good definition for an entity or attribute is as important as providing a
good name. The ability to find meaningful names comes with experience and a fundamental under-
standing of what the model represents.

Because the data model is a description of a business, it is best to choose meaningful business
names wherever that is possible. If there is no business name for an entity, assign the entity a
name that fits its purpose in the model.

Entity and Attribute Names

Data Modeling Overview Guide 55

Synonyms, Homonyms, and Aliases

Not everyone speaks the same language. Not everyone is always precise in the use of names.
Because names identify entities and attributes in a data model, verify that synonyms are resolved
so that they do not represent redundant data. Precisely define names so that each person who
reads the model can understand which facts are captured in which entity.

Select a name that clearly communicates a sense of what the entity or attribute represents. For
example, there is some difference among things named PERSON, CUSTOMER, and
EMPLOYEE. Although they can all represent an individual, they have distinct characteristics or
qualities. The business user tells you whether PERSON and EMPLOYEE are two different things,
or simply synonyms for the same thing.

Select names carefully, and be wary of calling two different things by the same name. For
example, if a business area insists on calling its customers "consumers," do not insist on the cus-
tomer name. Perhaps there is an alias, or there is a new "thing" that is distinct from, although sim-
ilar to, another "thing." In this case, perhaps CONSUMER is a category of CUSTOMER that can
participate in relationships that are not available for other categories of CUSTOMER.

You can enforce unique naming in the modeling environment. Unique naming avoids the acci-
dental use of homonyms, ambiguous names, or duplication of entities or attributes in the model.

Synonyms, Homonyms, and Aliases

Data Modeling Overview Guide 56

Entity Definitions

Defining the entities in your logical model is essential to the clarity of the model and elaborates on
the purpose of the entity. Defining entities also clarify which facts you want to include in the entity.
Undefined entities or attributes can be misinterpreted in later modeling efforts, and possibly
deleted or unified based on the misinterpretation.

Writing a good definition can be difficult. The best definitions are created using the points of view of
many different business users and functional groups within the organization. Definitions that can
pass the scrutiny of many disparate users provide a number of benefits including:

Clarity across the enterprise

Consensus about a single fact having a single purpose

Easier identification of categories of data

Most organizations and individuals develop their own conventions or standards for definitions.
Long definitions tend to take on a structure that helps the reader to understand the �thing� that is
being defined. Some of these definitions can go on for several pages (CUSTOMER, for example).
Because IDEF1X and IE do not provide standards for definitions, you can adopt the following items
as a basic standard for definition structure:

Description

Business example

Comments

Entity Definitions

Data Modeling Overview Guide 57

Descriptions

A description must be a clear and concise statement that tells whether an object is or is not the
thing you are trying to define. Often such descriptions can be fairly short. Be careful, however, that
the description is not too general or uses terms that are not defined. Here are a couple of
examples, one of good quality and one that is questionable:

Example of good description:

A COMMODITY is something that has a value that can be determined in an exchange.

The preceding example is a good description. Because someone is willing to trade something, you
know that something is a COMMODITY. If someone gives you three peanuts and a stick of gum for
a marble, then you know that a marble is a COMMODITY.

Example of bad description:

A CUSTOMER is someone who buys something from our company.

The preceding example is not a good description. Because you know that the company also sells
products to other businesses, you can misunderstand the word �someone�. The business may
also want to track potential CUSTOMERs, not simply customers who have already bought some-
thing from the company. You can also define �something� more fully to describe whether the sale
is of products, services, or some combination of the two.

Descriptions

Data Modeling Overview Guide 58

Business Examples
Providing typical business examples of the thing being defined is important, because good
examples help the reader understand a definition. Comments about peanuts, marbles, or some-
thing related to your business can help a reader to understand the concept of a COMMODITY. The
definition states that a commodity has value. The example can help to show that value is not
always measured in money.

Business Examples

Data Modeling Overview Guide 59

Comments
You can also include general comments for a description. Comments can include the following
information:

The person responsible for the definition

The source of the information for the definition

The state of the definition, such as when the definition was last changed

For some entities, also explain how it and a related entity or entity name differ. For example, a
CUSTOMER can be distinguished from a PROSPECT.

Comments

Data Modeling Overview Guide 60

Definition References and Circularity

An individual definition can look good, but when viewed together they can be circular. Without
some care, circularity can happen with entity and attribute definitions.

Example:

CUSTOMER: Someone who buys one or more of our PRODUCTs

PRODUCT: Something we offer for sale to CUSTOMERs

When you define entities and attributes in your data model, it is important that you avoid these cir-
cular references.

Definition References and Circularity

Data Modeling Overview Guide 61

Business Glossary Construction

A business glossary helps you use common business terms when defining an entity or attribute.

Definition example:

“A CURRENCY-SWAP is a complex agreement between two PARTYs where they agree to
exchange cash flows in two different CURRENCYs over a timeframe. Exchanges can be fixed
over the term of the swap, or may float. Swaps are often used to hedge currency and interest rate
risks.”

In the preceding example, defined terms within a definition are highlighted. Using this style makes
it unnecessary to define terms each time they are used, because people can look them up
whenever needed.

Providing base definitions of common business terms that are not entity or attribute names and
referring to these definitions is a good idea. You can use a glossary of commonly used terms sep-
arate from the model. Common business terms are highlighted with bold or italic font, as shown in
the preceding example.

This strategy seems like it can lead to going back and forth among definitions frequently. The
alternative, however, is to define each term completely every time it is used. When internal defin-
itions appear in many places, they must be maintained in many places. The probability that a
change is applied to all of them at the same time is small.

Developing a glossary of common business terms can serve several purposes. A glossary can
become the base for modeling definitions, and individually it can provide significant value to the
business to help people communicate.

Business Glossary Construction

Data Modeling Overview Guide 62

Attribute Definitions

Defining all attributes clearly is important, and the same rules apply. When you compare an attrib-
ute to a definition, verify whether it fits well and is not incomplete.

Example:

account open date

The date on which the ACCOUNT was opened. A further definition of what �opened� means is
needed before the definition is clear and complete.

Define attributes using the same basic structure as entity definitions. Attribute definitions must
include a description, examples, and comments. The definitions must also contain, whenever pos-
sible, validation rules that specify which facts are accepted as valid values for that attribute.

Attribute Definitions

Data Modeling Overview Guide 63

Validation Rules

A validation rule identifies a set of values that an attribute is allowed to take. A validation rule con-
strains or restricts the domain of values that are acceptable. Values have meanings in both an
abstract and a business sense. For example, if �person name,� is defined as the preferred form of
address chosen by the PERSON, it is constrained to the set of all character strings. You can define
any validation rules or valid values for an attribute as a part of the attribute definition. You can
assign these validation rules to an attribute using a domain. Supported domains include text, num-
ber, datetime, and blob.

Definitions of attributes, such as codes, identifiers, or amounts, often are not good business
examples. Including a description of the validation rules or valid values of the attribute is a good
idea. When you define a validation rule, it is better to go beyond simply listing the values that an
attribute can take. For example, you define the attribute �customer status� as follows:

Customer status: A code that describes the relationship between the CUSTOMER and our busi-
ness. Valid values: A, P, F, N.

The validation rule specification is not helpful because it does not define what the codes mean.
You can better describe the validation rule using a table or list of values, such as is described in
the following table:

Valid value Meaning

A: Active The CUSTOMER is currently involved in a purchasing rela-
tionship with our company.

P: Prospect Someone with whom we are interested in cultivating a rela-
tionship, but with whom we have no current purchasing rela-
tionship.

F: Former The CUSTOMER relationship has lapsed. In other words,
there has been no sale in the past 24 months.

N: No busi-
ness accep-
ted

The company has decided that no business relationships exist
with this CUSTOMER.

Validation Rules

Data Modeling Overview Guide 64

Rolenames

When a foreign key is contributed to a child entity through a relationship, you can write a new or
enhanced definition for the foreign key attributes. The definition explains the foreign key attribute
usage in the child entity. Assign a rolename to the definition, especially when the same attribute is
contributed to the same entity more than once. Duplicated attributes can appear identical, but
because they serve two different purposes, they cannot have the same definition.

Consider the following example where FOREIGN EXCHANGE TRADE has two relationships to
CURRENCY.

The key of CURRENCY is �currency code,� which is the identifier of a valid CURRENCY that you
want to track. You can see from the relationships that one CURRENCY is �bought by� and one is
�sold by� a FOREIGN EXCHANGE TRADE.

You also see that the identifier of the CURRENCY (the �currency code�) is used to identify each
of the two CURRENCYs. The identifier of the one that is bought is named �bought currency
code.� The identifier of the one that is sold is named �sold currency code.� The rolenames show
that the attributes are not the same thing as �currency code.�

Trading a CURRENCY for the same CURRENCY at the same time and exchange rate is not
logical. For a given transaction, such as the instance of FOREIGN EXCHANGE TRADE, "bought
currency code� and �sold currency code� must be different. Providing different definitions to the
two rolenames captures the difference between the two currency codes.

Attribute/Rolename Attribute Definition

Rolenames

Data Modeling Overview Guide 65

currency code The unique identifier of a CURRENCY.

bought currency code The identifier (�currency code�) of the CURRENCY
bought by (purchased by) the FOREIGN EXCHANGE
TRADE.

sold currency code The identifier (�currency code�) of the CURRENCY
sold by the FOREIGN EXCHANGE TRADE.

The definitions and validations of the bought and sold codes are based on �currency code.� �cur-
rency code� is known as a base attribute.

IDEF1X standard dictates that if two attributes with the same name migrate from the same base
attribute to an entity, the attributes must be unified. The result of unification is a single attribute
migrated through two relationships. Because of the IDEF1X standard, foreign key attributes are
also automatically unified. If you do not want to unify migrated attributes, you can rolename the
attributes when you name the relationship, in the Relationship Editor.

Rolenames

Data Modeling Overview Guide 66

Definitions and Business Rules

Business rules are a critical part of the data model. Business rules take the form of relationships,
rolenames, candidate keys, defaults, and other modeling structures. Modeling structures include
generalization categories, referential integrity, and cardinality. Business rules are also captured in
entity and attribute definitions and validation rules.

For example, a CURRENCY entity can be defined as follows:

The set of all valid currencies recognized anywhere in the world, or a subset of these that our com-
pany has decided to use in its day to day business operations.

The entity definition contains a subtle, but important distinction. In the latter case, there is a busi-
ness rule, or policy statement, involved. This rule manifests itself in the validation rules for �cur-
rency code.� This rule restricts the valid values for �currency code� to the values used by the
business. Maintenance of the business rule becomes a task of maintaining the table of valid values
for CURRENCY. To permit or prohibit trading of CURRENCYs, you simply create or delete
instances in the table of valid values.

The attributes �bought currency code� and �sold currency code� are similarly restricted.
However, both are further restricted using a validation rule that says �bought currency code� and
�sold currency code� cannot be equal. Therefore, each is dependent on the value of the other in
its actual use. Validation rules can be addressed in the definitions of attributes, and can also be
defined explicitly using validation rules, default values, and valid value lists.

Definitions and Business Rules

Data Modeling Overview Guide 67

Relationships
Relationships are a bit more complex than they seem at first. Relationships carry information that
describes the rules of the business and the constraints on creating, modifying, and deleting
instances. For example, you can use cardinality to define how many instances are involved in both
the child and parent entities in the relationship. You can also specify how you want to handle data-
base actions such as INSERT, UPDATE, and DELETE using referential integrity rules.

Data modeling also supports highly complex relationship types. Relationship types let you con-
struct a logical model of your data that is understandable to both business and systems experts.

This section contains the following topics

Relationship Cardinality
Referential Integrity
Additional Relationship Types

Relationships

Data Modeling Overview Guide 68

Relationship Cardinality

The many in a one-to-many relationship does not mean that there must be more than one instance
of the child connected to a parent. The many in one-to-many really means that there are zero, one,
or more instances of the child paired up to the parent.

Cardinality is the relational property that defines exactly how many instances appear in a child
table for each corresponding instance in the parent table. IDEF1X and IE differ in the symbols that
are used to specify cardinality. However, both methods provide symbols to denote one or more,
zero or more, zero or one, or exactly N, as explained in the following table:

Cardinality Description IDEF1X Notation Identifying
Nonidentifying

IE Notation Identifying
Nonidentifying

One to zero, one, or more

One to one or more

One to zero or one

Zero or one to zero, one, or more
(nonidentifying only)

Relationship Cardinality

Data Modeling Overview Guide 69

Zero or one to zero or one
(nonidentifying only)

Cardinality lets you specify additional business rules that apply to the relationship. In the following
figure, the business has decided to identify each MOVIE COPY based on both the foreign key
�movie-number� and a surrogate key �copy-number.� Also, each MOVIE is available as one or
more MOVIE COPYs. The business has also stated that the relationship is identifying, that MOVIE
COPY cannot exist unless there is a corresponding MOVIE.

The MOVIE/MOVIE COPY model also specifies the cardinality for the relationship. The rela-
tionship line shows that there is exactly one MOVIE, and only one, participating in a relationship.
MOVIE is the parent in the relationship.

By making MOVIE COPY the child in the relationship, the business defined a MOVIE COPY as
one of several rentable copies of a movie title. The business also determined that to be included in
the database, a MOVIE must have at least one MOVIE COPY. Therefore, the cardinality of the is
available as relationship is one-to-one or more. The P symbol next to the dot represents cardinality
of one or more. As a result, you also know that a MOVIE with no copies is not a legitimate instance
in this database.

In contrast, the business may want to know about all of the MOVIEs in the world, even MOVIEs for
which they have no copies. So their business rule is that for a MOVIE to exist (be recorded in their
information system) there can be zero, one, or more copies. To record this business rule, the P is
removed. When cardinality is not explicitly indicated in the diagram, cardinality is one-to-zero, one,
or more.

Relationship Cardinality

Data Modeling Overview Guide 70

Cardinality in Nonidentifying Relationships

Nonidentifying relationships contribute keys from a parent to a child entity. However, by definition,
some (or all) of the keys do not become part of the key of the child. This means that the child is not
identification-dependent on the parent. There can also be situations where an entity at the many
end of the relationship can exist without a parent, or existence-dependent.

If the relationship is mandatory from the perspective of the child, then the child is existence-
dependent on the parent. If it is optional, the child is neither existence or identification-dependent
with respect to that relationship (although it may be dependent in other relationships). To indicate
the optional case, IDEF1X includes a diamond at the parent end of the relationship line and IE
includes a circle.

In the preceding examples, the attribute �passenger id� is a foreign key attribute of SEAT.
Because the �passenger id� does not identify the SEAT but identifies the PASSENGER occupy-
ing the SEAT, the business has determined that the relationship is nonidentifying. The business
has also stated that the SEAT can exist without any PASSENGER, so the relationship is optional.
When a relationship is optional, the diagram includes either a diamond in IDEF1X, or a circle in IE
notation. Otherwise, the cardinality graphics for nonidentifying relationships are the same as for
identifying relationships.

The cardinality for the relationship is indicated with a Z in IDEF1X and a single line in IE. The car-
dinality states that a PASSENGER <may occupy> zero or one of these SEATs on a flight. Each
SEAT can be occupied, in which case the PASSENGER occupying the seat is identified using
�passenger id.� It can also be unoccupied, in which case the �passenger id� attribute is empty
(NULL).

Cardinality in Nonidentifying Relationships

Data Modeling Overview Guide 71

Referential Integrity

Because a relational database relies on data values to implement relationships, the integrity of the
data in the key fields is important. For example, if you change a value in a primary key column of a
parent table, reflect this change in each child table where the column appears as a foreign key.
The action that is applied to the foreign key value varies depending on the rules defined by the busi-
ness.

For example, a business that manages multiple projects might track its employees and projects in
a model similar to the one in the following example. The business has determined that the rela-
tionship between PROJECT and PROJECT EMPLOYEE is identifying, so the primary key of
PROJECT becomes a part of the primary key of PROJECT EMPLOYEE.

The business also decides that for each instance of PROJECT EMPLOYEE there is exactly one
instance of PROJECT, which indicates PROJECT EMPLOYEE is existence-dependent on
PROJECT.

What would happen if you were to delete an instance of PROJECT? If the business does not want
to track instances in PROJECT EMPLOYEE if PROJECT is deleted, delete all instances of
PROJECT EMPLOYEE that inherited part of their key from the deleted PROJECT.

Referential Integrity

Data Modeling Overview Guide 72

The rule that specifies the action taken when a parent key is deleted is known as referential integ-
rity. The referential integrity option chosen for this action in this relationship is Cascade. Each time
an instance of PROJECT is deleted, this Delete cascades to the PROJECT EMPLOYEE table.
The Delete action also deletes all related instances in PROJECT EMPLOYEE.

Available actions for referential integrity include the following:

Cascade

If an instance in the parent entity is deleted, each related instance in the child entity must
also be deleted.

Restrict

Deletion of an instance in the parent entity is prohibited if the following is true:

One or more related instances in the child entity exist.

Deletion of an instance in the child entity is prohibited if there is a related instance in
the parent entity.

Set Null

If an instance in the parent entity is deleted, the foreign key attributes in each related
instance in the child entity are set to NULL.

Set Default

If an instance in the parent entity is deleted, the foreign key attributes in each related
instance in the child entity are set to the specified default value.

<None>

No referential integrity action is required. Not every action must have a referential integrity
rule associated with it. For example, a business may decide that referential integrity is not
required when deleting an instance in a child entity. This business rule is valid where the car-
dinality is zero, one to zero, or one or more, because instances in the child entity can exist
even if there are no related instances in the parent entity.

Although referential integrity is not a formal part of the IDEF1X or IE languages, it does capture
business rules that indicate how the completed database works. Referential integrity is a critical
part of data modeling and provides a method for both capture and display of referential integrity
rules.

Once referential integrity is defined, the facilitator or analyst tests the referential integrity rules
defined by the business users. The facilitator or analyst asks questions or works through different
scenarios that show the results of the business decision. When the requirements are defined and

Referential Integrity

Data Modeling Overview Guide 73

fully understood, specific referential integrity actions, such as Restrict or Cascade can be recom-
mended.

Referential Integrity

Data Modeling Overview Guide 74

RI, Cardinality, and Identifying Relationships

In the figure below, the relationship between PROJECT and PROJECT-EMPLOYEE is identifying.
Therefore, the valid options for referential integrity for the parent entity in the relationship,
PROJECT, include Cascade and Restrict:

Cascade indicates that all instances of PROJECT-EMPLOYEE that are affected by the deletion of
an instance of PROJECT should also be deleted. Restrict indicates that a PROJECT cannot be
deleted until all instances of PROJECT-EMPLOYEE that have inherited its key have been deleted.
If there are any left, the Delete is restricted.

One reason to restrict the deletion might be that the business needs to know other facts about a
PROJECT-EMPLOYEE such as the date started on the project. If you Cascade the Delete, you
lose this supplementary information.

When you update an instance in the parent entity, the business has also determined that the
updated information should cascade to the related instances in the child entity.

As you can see in the example, different rules apply when an instance is inserted, updated, or
deleted in the child entity. When an instance is inserted, for example, the action is set to Restrict.
This rule appears as I:R placed next to the child entity in the relationship. This means that an
instance can be added to the child entity only if the referenced foreign key matches an existing
instance in the parent entity. So, you can insert a new instance in PROJECT-EMPLOYEE only if
the value in the key field matches a key value in the PROJECT entity.

RI, Cardinality, and Identifying Relationships

Data Modeling Overview Guide 75

Additional Relationship Types

As you develop a logical model, you may find some parent/child relationships that do not fall into
the standard, one-to-many relationships. These relationship exceptions include:

Many-to-many relationships

A relationship where one entity <owns> many instances of a second entity, and the second
entity also <owns> many instances of the first entity. For example, an EMPLOYEE <has>
one or more JOB TITLEs, and a JOB TITLE <is applied to> one or more EMPLOYEEs.

N-ary relationships

A simple one-to-many relationship between two entities is termed binary. When a one-to-
many relationship exists between two or more parents and a single child entity, it is termed
an n-ary relationship.

Recursive relationships

Entities that have a relationship to themselves take part in recursive relationships. For
example, for the EMPLOYEE entity, you could include a relationship to show that one
EMPLOYEE <manages> one or more EMPLOYEEs. This type of relationship is also used
for bill-of-materials structures, to show relationships between parts.

Subtype relationships

Related entities are grouped together so that all common attributes appear in a single entity,
but all attributes that are not in common appear in separate, related entities. For example,
the EMPLOYEE entity could be subtyped into FULL-TIME and PART-TIME.

Additional Relationship Types

Data Modeling Overview Guide 76

Many-to-Many Relationships

In key-based and fully-attributed models, relationships must relate zero or one instances in a par-
ent entity to a specific set of instances in a child entity. As a result of this rule, many-to-many rela-
tionships that were discovered and documented in an ERD or earlier modeling phase must be
broken down into a pair of one-to-many relationships.

This figure shows a many-to-many relationship between STUDENTs and COURSEs. If you did not
eliminate the many-to-many relationship between COURSE and STUDENT, the key of COURSE
would be included in the key of STUDENT, and the key of STUDENT would be included in the key
of COURSE. Since COURSEs are identified by their own keys, and likewise for STUDENTs this,
creates an endless loop.

You can eliminate a many-to-many relationship by creating an associative entity. In the following
figure, the many-to-many relationship between STUDENT and COURSE is resolved by adding the
COURSE-ROSTER entity.

COURSE-ROSTER is an associative entity, which means it is used to define the association
between two related entities.

Many-to-many relationships often hide meaning. In the diagram with a many-to-many relationship,
you know that a STUDENT enrolls in many COURSEs, but no information is included to show how.
When you resolve the many-to-many relationship, you see not only how the entities are related,
but uncover additional information, such as the �course-time,� which also describes facts about
the relationship.

Many-to-Many Relationships

Data Modeling Overview Guide 77

Once the many-to-many relationship is resolved, you are faced with the requirement to include rela-
tionship verb phrases that validate the structure. There are two ways to do this: construct new verb
phrases or use the verb phrases as they existed for the many-to-many relationship. The most
straightforward way is to continue to read the many-to-many relationship, through the associative
entity. Therefore, you can read A STUDENT <enrolls in> many COURSEs and A COURSE <is
taken by> many STUDENTs. Many modelers adopt this style for constructing and reading a
model.

There is another style, which is equally correct, but a bit more cumbersome. The structure of the
model is exactly the same, but the verb phrases are different, and the model is read in a slightly dif-
ferent way:

You would read: A STUDENT <enrolls in a COURSE recorded in> one or more COURSE-
ROSTERs, and A COURSE <is taken by a STUDENT recorded in> one or more COURSE-
ROSTERs.Although the verb phrases are now quite long, the reading follows the standard pattern;
reading directly from the parent entity to the child.

Whichever style you choose, be consistent. Deciding how to record verb phrases for many-to-
many relationships is not too difficult when the structures are fairly simple, as in these examples.
However, this can become more difficult when the structures become more complex, such as
when the entities on either side of the associative entities are themselves associative entities,
which are there to represent other many-to-many relationships.

Many-to-Many Relationships

Data Modeling Overview Guide 78

N-ary Relationships

When a single parent-child relationship exists, the relationship is called binary. All of the previous
examples of relationships to this point have been binary relationships. However, when creating a
data model, it is not uncommon to come across n-ary relationships, the modeling name for rela-
tionships between two or more parent entities and a single child table. An example of an n-ary rela-
tionship is shown in the following figure:

Like many-to-many relationships, three-, four-, or n-ary relationships are valid constructs in entity
relationship diagrams. Also like many-to-many relationships, n-ary relationships should be
resolved in later models using a set of binary relationships to an associative entity.

If you consider the business rule stated in the figure, you can see that a CONTRACT represents a
three-way relationship among COMPANY, PRODUCT, and CUSTOMER. The structure indicates
that many COMPANYs sell many PRODUCTs to many CUSTOMERs. When you see a rela-
tionship like this, however, there are business questions that should be answered. For example,
�Must a product be offered by a company before it can be sold?� �Can a customer establish a
single contract including products from several different companies?� and, �Do you need to keep
track of which customers 'belong to' which companies?� Depending on the answers, the struc-
tures may change.

For example, if a product must be offered by a company before it can be sold, then you would have
to change the structure as follows:

N-ary Relationships

Data Modeling Overview Guide 79

Since PRODUCTs must be offered by COMPANYs, you can create an associative entity to cap-
ture this relationship. As a result, the original three-way relationship to CONTRACT is replaced by
two, two-way relationships.

By asking a variety of business questions, it is likely that you will find that most n-ary relationships
can be broken down into a series of relationships to associative entities.

N-ary Relationships

Data Modeling Overview Guide 80

Recursive Relationships

An entity can participate in a recursive relationship (also called fishhook) where the same entity is
both the parent and the child. This relationship is an important one when modeling data originally
stored in legacy DBMSs such as IMS or IDMS that use recursive relationships to implement bill of
materials structures.

For example, a COMPANY can be the parent of other COMPANYs. As with all non-identifying rela-
tionships, the key of the parent entity appears in the data area of the child entity. See the following
figure:

The recursive relationship for COMPANY includes the diamond symbol to indicate that the foreign
key can be NULL, such as when a COMPANY has no parent. Recursive relationships must be
both optional (diamond) and non-identifying.

The �company-id� attribute is migrated through the recursive relationship, and appears in the
example with the rolename �parent-id.� There are two reasons for this. First, as a general design
rule, an attribute cannot appear twice in the same entity under the same name. Thus, to complete
a recursive relationship, you must provide a rolename for the migrated attribute.

Second, the attribute �company-id� in the key, which identifies each instance of COMPANY, is not
the same thing as the �company-id� migrated through the relationship, which identifies the parent
COMPANY. You cannot use the same definition for both attributes, so the migrated attribute must
be rolenamed. An example of possible definitions follows:

company-id

The unique identifier of a COMPANY.

parent-id

The �company-id� of the parent COMPANY. Not all COMPANYs have a parent
COMPANY.

Recursive Relationships

Data Modeling Overview Guide 81

If you create a sample instance table, such as the one that follows, you can test the rules in the rela-
tionship to ensure that they are valid.

COMPANY

company-id parent-id company-name

C1 NULL Big Monster Company

C2 C1 Smaller Monster Company

C3 C1 Other Smaller Company

C4 C2 Big Subsidiary

C5 C2 Small Subsidiary

C6 NULL Independent Company

The sample instance table shows that Big Monster Company is the parent of Smaller Monster
Company and Other Smaller Company. Smaller Monster Company, in turn, is the parent of Big
Subsidiary and Small Subsidiary. Independent Company is not the parent of any other company
and has no parent. Big Monster Company also has no parent. If you diagram this information hier-
archically, you can validate the information in the table, as shown in the figure below:

Recursive Relationships

Data Modeling Overview Guide 82

Subtype Relationships

A subtype relationship, also referred to as a generalization category, generalization hierarchy, or
inheritance hierarchy, is a way to group a set of entities that share common characteristics. For
example, you might find during a modeling effort that several different types of ACCOUNTs exist in
a bank such as checking, savings, and loan accounts, as shown in the figure below:

When you recognize similarities among the different independent entities, you may be able to col-
lect attributes common to all three types of accounts into a hierarchical structure.

You can move these common attributes into a higher level entity called the supertype entity (or
generalization entity). Those that are specific to the individual account types remain in the subtype
entities. In this example, you can create a supertype entity called ACCOUNT to represent the
information that is common across the three types of accounts. The supertype ACCOUNT includes
a primary key of �account-number.�

Three subtype entities, CHECKING-ACCOUNT, SAVINGS-ACCOUNT, and LOAN-ACCOUNT,
are added as dependent entities that are related to ACCOUNT using a subtype relationship.

The result is a structure like the one shown in the figure below:

In this figure, an ACCOUNT is either a CHECKING-ACCOUNT, a SAVINGS-ACCOUNT, or a
LOAN-ACCOUNT. Each subtype entity is an ACCOUNT and inherits the properties of ACCOUNT.
The three different subtype entities of ACCOUNT are mutually exclusive.

Subtype Relationships

Data Modeling Overview Guide 83

In order to distinguish one type of ACCOUNT from another, you can add the attribute �account-
type� as the subtype discriminator. The subtype discriminator is an attribute of the category super-
type (ACCOUNT) and its value will tell you which type of ACCOUNT it is.

Once you have established the subtype relationship, you can examine each attribute in the original
model, in turn, to determine if it should remain in the subtype entities, or move to the supertype.
For example, each subtype entity has an �open-date.� If the definitions of these three kinds of
�open-date� are the same, you can move them to the supertype, and drop them from the subtype
entities.

You must analyze each attribute in turn to determine if it remains in the subtype entity or moves to
the supertype entity. In those cases where a single attribute appears in only some of the subtype
entities, you face a more difficult decision. You can either leave the attribute with the subtype entit-
ies or move the attribute up to the supertype. If this attribute appears in the supertype, the value of
the attribute in the supertype will be NULL when the attribute is not included in the corresponding
subtype entity.

After analysis, the resulting model might appear as follows:

When developing a subtype relationship, you must also be aware of any specific business rules
that you need to impose at the subtype level that are not pertinent to other subtypes of the super-
type. For example, LOAN accounts are deleted after they reach a zero balance. You would not
want to delete CHECKING and SAVINGS accounts under the same conditions.

There can also be relationships that are meaningful to a single subtype and not to any other sub-
type in the hierarchy. For example, the LOAN entity needs to be examined, to ensure that any pre-
vious relationships to records of customer payments or assets are not lost because of a different
organizational structure.

Subtype Relationships

Data Modeling Overview Guide 84

Complete Compared to Incomplete Subtype Structures

In IDEF1X, different symbols are used to specify whether or not the set of subtype entities in a sub-
type relationship is fully defined. An incomplete subtype indicates that the modeler feels there may
be other subtype entities that have not yet been discovered. An incomplete subtype is indicated by
a single line at the bottom of the subtype symbol, as shown in the figure below:

A complete subtype indicates that the modeler is certain that all possible subtype entities are
included in the subtype structure. For example, a complete subtype could capture information spe-
cific to male and female employees, as shown in the figure below. A complete subtype is indicated
by two lines at the bottom of the subtype symbol.

When you create a subtype relationship, it is a good rule to also create a validation rule for the dis-
criminator. This helps to ensure that all subtypes have been discovered. For example, a validation
rule for �account-type� might include: C=checking account, S=savings account, L=loans. If the
business also has legacy data with account types of �O,� the validation rule uncovers the undoc-
umented type and lets you decide if the �O� is a symptom of poor design in the legacy system or a
real account type that you forgot.

Complete Compared to Incomplete Subtype Structures

Data Modeling Overview Guide 85

Benefits of Data Modeling

Regardless of the DBMS you use or the types of data models you want to develop, modeling your
database in erwin® Data Modeler has many benefits:

Enables usage by database and application development staff to define system require-
ments and to communicate among themselves and with end users.

Provides a clear picture of referential integrity constraints. Maintaining referential integrity is
essential in the relational model where relationships are encoded implicitly.

Provides a logical RDBMS-independent picture of your database that automated tools can
use to generate RDBMS-specific information. This way, you can use a single diagram to
generate Db2 table schemas, and schemas for other relational DBMSs.

Lets you produce a diagram summarizing the results of your data modeling efforts and gen-
erate a database schema from that model.

Benefits of Data Modeling

Data Modeling Overview Guide 86

IDEF1X and IE Subtype Notation

The following illustrates subtype notation in IDEF1X and IE:

� IDEF1X Subtype Notation IE Subtype Notation

� Complete Incomplete �

Exclus-
ive Sub-
type

Inclusive
Subtype

IDEF1X and IE Subtype Notation

Data Modeling Overview Guide 87

When to Create a Subtype Relationship

You should create a subtype relationship when:

Entities share a common set of attributes. This was the case in our previous examples.

Entities share a common set of relationships. This has not been explored but, referring back
to the account structure, you can, as needed, collect any common relationships that the sub-
type entities had into a single relationship from the generic parent. For example, if each
account type is related to many CUSTOMERs, you can include a single relationship at the
ACCOUNT level, and eliminate the separate relationships from the individual subtype entit-
ies.

Business model demands that the subtype entities should be exposed in a model (usually
for communication or understanding purposes) even if the subtype entities have no attrib-
utes that are different, and even if they participate in no relationships distinct from other sub-
type entities. Remember that one of the major purposes of a model is to assist in
communication of information structures, and if showing subtype entities assists com-
munication, then show them.

When to Create a Subtype Relationship

Data Modeling Overview Guide 88

Normalization Problems and Solutions
This section contains the following topics

Normalization
Overview of the Normal Forms
Common Design Problems
Unification
How Much Normalization Is Enough
Support for Normalization

Normalization Problems and Solutions

Data Modeling Overview Guide 89

Normalization

Normalization, in relational database design, is the process by which data in a relational construct
is organized to minimize redundancy and non-relational constructs. Following the rules for nor-
malization, you can control and eliminate data redundancy by removing all model structures that
provide multiple ways to know the same fact.

The goal of normalization is to ensure that there is only one way to know a fact. A useful slogan
summarizing this goal is:

ONE FACT IN ONE PLACE!

Normalization

Data Modeling Overview Guide 90

Overview of the Normal Forms

The following are the formal definitions for the most common normal forms.

Functional Dependence (FD)

Given an entity E, attribute B of E is functionally dependent on attribute A of E if and only if
each value of A in E has associated with it precisely one value of B in E (at any one time). In
other words, A uniquely determines B.

Full Functional Dependence

Given an entity E, an attribute B of E is fully functionally dependent on a set of attributes A of
E if and only if B is functionally dependent on A and not functionally dependent on any
proper subset of A.

First Normal Form (1NF)

An entity E is in 1NF if and only if all underlying values contain only atomic values. Any
repeating groups (that might be found in legacy COBOL data structures, for example) must
be eliminated.

Second normal Form (2NF)

An entity E is in 2NF if it is in 1NF and every non-key attribute is fully dependent on the
primary key. In other words, there are no partial key dependencies-dependence is on the
entire key K of E and not on a proper subset of K.

Third Normal Form (3NF)

An entity E is in 3NF if it is in 2NF and no non-key attribute of E is dependent on another
non-key attribute. There are several equivalent ways to express 3NF. Another way is: An
entity E is in 3NF if it is in 2NF and every non-key attribute is non-transitively dependent on
the primary key. A final way is: An entity E is in 3NF if every attribute in E carries a fact about
all of E (2NF) and only about E (as represented by the entity's entire key and only by that
key). One way to remember how to implement 3NF is using the following quip: �Each attrib-
ute relies on the key, the whole key, and nothing but the key, so help me Codd!�

Beyond 3NF lie three more normal forms, Boyce-Codd, Fourth, and Fifth. In practice, third normal
form is the standard. At the level of the physical database design, choices are usually made to
denormalize a structure in favor of performance for a certain set of transactions. This may intro-
duce redundancy in the structure, but it is often worth it.

Overview of the Normal Forms

Data Modeling Overview Guide 91

Common Design Problems

Many common design problems are a result of violating one of the normal forms. Common prob-
lems include:

Repeating data groups

Multiple use of the same attribute

Multiple occurrences of the same fact

Conflicting facts

Derived attributes

Missing information

When you work on eliminating design problems, the use of sample instance data can be invaluable
in discovering many normalization errors.

Common Design Problems

Data Modeling Overview Guide 92

Repeating Data Groups

Repeating data groups can be defined as lists, repeating elements, or internal structures inside an
attribute. This structure, although common in legacy data structures, violates first normal form and
must be eliminated in an RDBMS model. An RDBMS cannot handle variable-length repeating
fields because it offers no ability to subscript through arrays of this type. The entity below contains
a repeating data group, �children's-names.� Repeating data groups violate first normal form,
which basically states that an entity is in first normal form if each of its attributes has a single mean-
ing and not more than one value for each instance.

Repeating data groups, as shown below, present problems when defining a database to contain
the actual data. For example, after designing the EMPLOYEE entity, you are faced with the ques-
tions, �How many children's names do you need to record?� �How much space should you leave
in each row in the database for the names?� and �What will you do if you have more names than
remaining space?�

The following sample instance table might clarify the problem:

EMPLOYEE

emp-id emp-name emp-address children's-names

E1 Tom Berkeley Jane

E2 Don Berkeley Tom, Dick, Donna

E3 Bob Princeton -

E4 John New York Lisa

E5 Carol Berkeley -

In order to fix the design, it is necessary to somehow remove the list of children's names from the
EMPLOYEE entity. One way to do this is to add a CHILD table to contain the information about
employee's children, as follows:

Repeating Data Groups

Data Modeling Overview Guide 93

Once that is done, you can represent the names of the children as single entries in the CHILD
table. In terms of the physical record structure for employee, this can resolve some of your ques-
tions about space allocation, and prevent wasting space in the record structure for employees who
have no children or, conversely, deciding how much space to allocate for employees with families.

The following tables are the sample instance tables for the EMPLOYEE-CHILD model:

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD

emp-id child-id child-name

E2 C1 Tom

E2 C2 Dick

E2 C3 Donna

E4 C1 Lisa

This change makes the first step toward a normalized model; conversion to first normal form. Both
entities now contain only fixed-length fields, which are easy to understand and program.

Repeating Data Groups

Data Modeling Overview Guide 94

Multiple Use of the Same Attribute

It is also a problem when a single attribute can represent one of two facts, and there is no way to
understand which fact it represents. For example, the EMPLOYEE entity contains the attribute
“start-or-termination-date” where you can record this information for an employee as follows:

The following sample instance table shows start-or-termination date:

EMPLOYEE

emp-id emp-name emp-address start-or-termination-date

E1 Tom Berkeley January 10, 2004

E2 Don Berkeley May 22, 2002

E3 Bob Princeton March 15, 2003

E4 John New York September 30, 2003

E5 Carol Berkeley April 22, 2000

E6 George Pittsburgh October 15, 2002

The problem in the current design is that there is no way to record both a start date, the date that
the EMPLOYEE started work, and a termination date, the date on which an EMPLOYEE left the
company, in situations where both dates are known. This is because a single attribute represents
two different facts. This is also a common structure in legacy COBOL systems, but one that often
resulted in maintenance nightmares and misinterpretation of information.

The solution is to allow separate attributes to carry separate facts. The following figure is an
attempt to correct the problem. It is still not quite right. To know the start date for an employee, for
example, you have to derive what kind of date it is from the “date-type” attribute. While this may be
efficient in terms of physical database space conservation, it creates confusion with query logic.

Multiple Use of the Same Attribute

Data Modeling Overview Guide 95

In fact, this solution actually creates a different type of normalization error, since “date-type” does
not depend on “employee-id” for its existence. This is also poor design since it solves a technical
problem, but does not solve the underlying business problem-how to store two facts about an
employee.

When you analyze the data, you can quickly determine that it is a better solution to let each attrib-
ute carry a separate fact, as in the following figure:

The following table is a sample instance table showing “start-date” and “termination-date”:

EMPLOYEE

emp-id emp-
name

emp-
address

start-date termination-
date

E1 Tom Berkeley January 10, 2004 -

E2 Don Berkeley May 22, 2002 -

E3 Bob Princeton March 15, 2003 -

E4 John New York September 30,
2003

-

E5 Carol Berkeley April 22, 2000 -

E6 George Pittsburgh October 15, 2002 Nov 30, 2003

Each of the two previous situations contained a first normal form error. By changing the structures,
an attribute now appears only once in the entity and carries only a single fact. If you make sure that

Multiple Use of the Same Attribute

Data Modeling Overview Guide 96

all the entity and attribute names are singular and that no attribute can carry multiple facts, you
have taken a large step toward assuring that a model is in first normal form.

Multiple Use of the Same Attribute

Data Modeling Overview Guide 97

Multiple Occurrences of the Same Fact

One of the goals of a relational database is to maximize data integrity. To do so, it is important to
represent each fact in the database once and only once, otherwise errors can begin to enter into
the data. The only exception to this rule (one fact in one place) is in the case of key attributes,
which can appear multiple times in a database. The integrity of keys, however, is managed using
referential integrity.

Multiple occurrences of the same fact often point to a flaw in the original database design. In the fol-
lowing figure, you can see that including “employee-address” in the CHILD entity has introduced
an error in the database design. If an employee has multiple children, the address must be main-
tained separately for each child.

“employee-address” is information about the EMPLOYEE, not information about the CHILD. In
fact, this model violates second normal form, which states that each fact must depend on the entire
key of the entity in order to belong to the entity. The example above is not in second normal form
because “employee-address” does not depend on the entire key of CHILD, only on the “employee-
id” portion, creating a partial key dependency. If you place “employee-address” back with
EMPLOYEE, you can ensure that the model is in at least second normal form.

Multiple Occurrences of the Same Fact

Data Modeling Overview Guide 98

Conflicting Facts

Conflicting facts can occur for a variety of reasons, including violation of first, second, or third nor-
mal forms. An example of conflicting facts occurring through a violation of second normal form is
shown in the following figure:

The following two tables are sample instance tables showing “emp-spouse-address”:

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD

emp-id child-id child-name emp-spouse-address

E1 C1 Jane Berkeley

E2 C1 Tom Berkeley

E2 C2 Dick Berkeley

E2 C3 Donna Cleveland

E4 C1 Lisa New York

The attribute named “emp-spouse-address” is included in CHILD, but this design is a second nor-
mal form error. The instance data highlights the error. As you can see, Don is the parent of Tom,
Dick, and Donna but the instance data shows two different addresses recorded for Don's spouse.

Conflicting Facts

Data Modeling Overview Guide 99

Perhaps Don has had two spouses (one in Berkeley, and one in Cleveland), or Donna has a dif-
ferent mother from Tom and Dick. Or perhaps Don has one spouse with addresses in both Berke-
ley and Cleveland. Which is the correct answer? There is no way to know from the model as it
stands. Business users are the only source that can eliminate this type of semantic problem, so
analysts need to ask the right questions about the business to uncover the correct design.

The problem in the example is that “emp-spouse-address”is a fact about the EMPLOYEE's
SPOUSE, not about the CHILD. If you leave the structure the way it is now, then every time Don's
spouse changes address (presumably along with Don), you will have to update that fact in multiple
places; once in each CHILD instance where Don is the parent. If you have to update multiple
places, you might miss some and get errors.

Once it is recognized that “emp-spouse-address” is a fact not about a child, but about a spouse,
you can correct the problem. To capture this information, you can add a SPOUSE entity to the
model, as shown in the following figure:

The following three tables are sample instance tables reflecting the SPOUSE Entity:

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD

Conflicting Facts

Data Modeling Overview Guide 100

emp-id child-id child-name

E1 C1 Jane

E2 C1 Tom

E2 C2 Dick

E2 C3 Donna

E4 C1 Lisa

SPOUSE

emp-id spouse-id spouse-address current-spouse

E2 S1 Berkeley Y

E2 S2 Cleveland N

E3 S1 Princeton Y

E4 S1 New York Y

E5 S1 Berkeley Y

In breaking out SPOUSE into a separate entity, you can see that the data for the address of Don's
spouses is correct. Don has two spouses, one current and one former.

By making sure that every attribute in an entity carries a fact about that entity, you can generally be
sure that a model is in at least second normal form. Further transforming a model into third normal
form generally reduces the likelihood that the database will become corrupt; in other words, that it
will contain conflicting information or that required information will be missing.

Conflicting Facts

Data Modeling Overview Guide 101

Derived Attributes

Another example of conflicting facts occurs when third normal form is violated. For example, if you
included both a �birth-date� and an �age� attribute as non-key attributes in the CHILD entity, you
violate third normal form. This is because �age� is functionally dependent on �birth-date.� By
knowing �birth-date� and the date today, you can derive the �age� of the CHILD.

Derived attributes are those that may be computed from other attributes, such as totals, and there-
fore you do not need to directly store them. To be accurate, derived attributes need to be updated
every time their derivation sources are updated. This creates a large overhead in an application
that does batch loads or updates, for example, and puts the responsibility on application designers
and coders to ensure that the updates to derived facts are performed.

A goal of normalization is to ensure that there is only one way to know each fact recorded in the
database. If you know the value of a derived attribute, and you know the algorithm by which it is
derived and the values of the attributes used by the algorithm, then there are two ways to know the
fact (look at the value of the derived attribute, or derive it by manual calculation). If you can get an
answer two different ways, it is possible that the two answers will be different.

For example, you can choose to record both the �birth-date� and the �age�for CHILD. And sup-
pose that the �age� attribute is only changed in the database during an end of month maintenance
job. Then, when you ask the question, �How old is this CHILD?� you can directly access �age�
and get an answer, or you can subtract �birth-date� from �today's-date.� If you did the sub-
traction, you would always get the right answer. If �age� was not recently updated, it might give
you the wrong answer, and there would always be the potential for conflicting answers.

There are situations, where it makes sense to record derived data in the model, particularly if the
data is expensive to compute. It can also be very useful in discussing the model with those in the
business. Although the theory of modeling says that you should never include derived data or do
so only sparingly, break the rules when you must and at least record the fact that the attribute is
derived and state the derivation algorithm.

Derived Attributes

Data Modeling Overview Guide 102

Missing Information

Missing information in a model can sometimes result from efforts to normalize the data. In the
example, adding the SPOUSE entity to the EMPLOYEE-CHILD model improves the design, but
destroys the implicit relationship between the CHILD entity and the SPOUSE address. It is pos-
sible that the reason that “emp-spouse-address” was stored in the CHILD entity in the first place
was to represent the address of the other parent of the child (which was assumed to be the
spouse). If you need to know the other parent of each of the children, then you must add this inform-
ation to the CHILD entity.

The following three tables are sample instance tables for EMPLOYEE, CHILD, and SPOUSE:

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD

emp-id child-id child-name other-parent-id

E1 C1 Jane -

E2 C1 Tom S1

Missing Information

Data Modeling Overview Guide 103

E2 C2 Dick S1

E2 C3 Donna S2

E4 C1 Lisa S1

SPOUSE

emp-id spouse-id spouse-address current-or-not

E2 S1 Berkeley Y

E2 S2 Cleveland N

E3 S1 Princeton Y

E4 S1 New York Y

E5 S1 Berkeley Y

However, the normalization of this model is not complete. In order to complete it, you must ensure
that you can represent all possible relationships between employees and children, including those
where both parents are employees.

Missing Information

Data Modeling Overview Guide 104

Unification

In the following example, the �employee-id� attribute migrates to the CHILD entity through two
relationships: one with EMPLOYEE and the other with SPOUSE. You might expect that the foreign
key attribute would appear twice in the CHILD entity as a result. Since the attribute �employee-id�
was already present in the key area of CHILD, it is not repeated in the entity even though it is part
of the key of SPOUSE.

This combining of two identical foreign key attributes migrated from the same base attribute
through two or more relationships is called unification. In the example, �employee-id�was part of
the primary key of CHILD (contributed by the �has� relationship from EMPLOYEE) and was also a
non-key attribute of CHILD (contributed by the �has� relationship from SPOUSE). Since both for-
eign key attributes are the identifiers of the same EMPLOYEE, it is better that the attribute appears
only once. Unification is implemented automatically when this situation occurs.

The rules used to implement unification include:

If the same foreign key is contributed to an entity more than once, without the assignment of
rolenames, then all occurrences unify.

If the occurrences of the foreign key are given different rolenames, then unification does not
occur.

If different foreign keys are assigned the same rolename, and these foreign keys are role-
named back to the same base attribute, then unification occurs. If they are not rolenamed
back to the same base attribute, there is an error in the diagram.

If any of the foreign keys that unify are part of the primary key of the entity, then the unified
attribute remains as part of the primary key.

Unification

Data Modeling Overview Guide 105

If none of the foreign keys that unify are part of the primary key, then the unified attribute is
not part of the primary key.

Accordingly, you can override the unification of foreign keys, when necessary, by assigning role-
names. If you want the same foreign key to appear two or more times in a child entity, you can add
a rolename to each foreign key attribute.

Unification

Data Modeling Overview Guide 106

How Much Normalization Is Enough

From a formal normalization perspective (what an algorithm would find solely from the shape of the
model, without understanding the meanings of the entities and attributes) there is nothing wrong
with the EMPLOYEE-CHILD-SPOUSE model. However, just because it is normalized does not
mean that the model is complete or correct. It still may not be able to store all of the information
that is needed or it may store the information inefficiently. With experience, you can learn to detect
and remove additional design flaws even after the pure normalization is finished.

Using the following EMPLOYEE-CHILD-SPOUSE model example, you see that there is no way of
recording a CHILD whose parents are both EMPLOYEEs. Therefore, you can make additional
changes to try to accommodate this type of data.

If you noticed that EMPLOYEE, SPOUSE, and CHILD all represent instances of people, you may
want to try to combine the information into a single table that represents facts about people and
one that represents facts about relationships. To fix the model, you can eliminate CHILD and
SPOUSE, replacing them with PERSON and PERSON-ASSOCIATION. This lets you record par-
entage and marriage through the relationships between two PERSONs captured in the PERSON-
ASSOCIATION entity.

How Much Normalization Is Enough

Data Modeling Overview Guide 107

In this structure, you can finally record any number of relationships between two PERSONs, as
well as a number of relationships you could not previously record in the first model, such as adop-
tion. The new structure automatically covers it. To represent adoption you can add a new value to
the “person-association-type” validation rule to represent adopted parentage. You can also add
legal guardian, significant other, or other relationships between two PERSONs later, if needed.

EMPLOYEE remains an independent entity, since the business chooses to identify EMPLOYEEs
differently from PERSONs. However, EMPLOYEE inherits the properties of PERSON by virtue of
the is a relationship back to PERSON. Notice the Z on that relationship and the absence of a dia-
mond. This is a one-to-zero or one relationship that can sometimes be used in place of a subtype
when the subtype entities require different keys. In this example, a PERSON either is an
EMPLOYEE or is not an EMPLOYEE.

If you wanted to use the same key for both PERSON and EMPLOYEE, you can encase the
EMPLOYEE entity into PERSON and allowed its attributes to be NULL whenever the PERSON is
not an EMPLOYEE. You still can specify that the business wanted to look up employees by a sep-
arate identifier, but the business statements would be a bit different. This structure is shown in the
following figure:

How Much Normalization Is Enough

Data Modeling Overview Guide 108

This means that a model may normalize, but still may not be a correct representation of the busi-
ness. Formal normalization is important. Verifying that the model means something, perhaps with
sets of sample instance tables as done here, is no less important.

How Much Normalization Is Enough

Data Modeling Overview Guide 109

Support for Normalization

Support for normalization of data models is supported, but does not currently contain a full nor-
malization algorithm. If you have not used a real time modeling tool before, you will find the stand-
ard modeling features quite helpful. They will prevent you from making many normalization errors.

Support for Normalization

Data Modeling Overview Guide 110

First Normal Form Support

In a model, each entity or attribute is identified by its name. Any name for an object is accepted,
with the following exceptions:

A second use of an entity name (depending on your preference for unique names) is
flagged.

A second use of an attribute name is flagged, unless that name is a rolename. When role-
names are assigned, the same name for an attribute may be used in different entities.

You cannot bring a foreign key into an entity more than once without unifying the like
columns.

By preventing multiple uses of the same name, you are prompted to put each fact in exactly one
place. However, there may still be second normal form errors if you place an attribute incorrectly,
but no algorithm would find that without more information than is present in a model.

In a data model, erwin� Data Modeler cannot know that a name you assign to an attribute can rep-
resent a list of things. In the following example, erwin� Data Modeler accepts �children's-names�
as an attribute name. So erwin� Data Modeler does not directly guarantee that every model is in
first normal form.

However, the DBMS schema function does not support a data type of list. Since the schema is a
representation of the database in a physical relational system, first normal form errors are also pre-
vented at this level.

First Normal Form Support

Data Modeling Overview Guide 111

Second and Third Normal Form Support

erwin� Data Modeler does not currently manage functional dependencies, but it can help to pre-
vent second and third normal form errors. For example, if you reconstruct the examples below, you
will find that once �spouse-address� is defined as an attribute of SPOUSE, you cannot also define
it as an attribute of CHILD. (Again, depending on your preference for unique names.)

By preventing the multiple occurrence of foreign keys without rolenames, you are reminded to
think about what the structure represents. If the same foreign key occurs twice in the same entity,
there is a business question to ask: Are we recording the keys of two separate instances, or do
both of the keys represent the same instance?

When the foreign keys represent different instances, separate rolenames are needed. If the two for-
eign keys represent the same instance, then it is very likely that there is a normalization error some-
where. A foreign key appearing twice in an entity without a rolename means that there is a
redundant relationship structure in the model. When two foreign keys are assigned the same role-
name, unification occurs.

Second and Third Normal Form Support

Data Modeling Overview Guide 112

Physical Models
Two levels of physical models exist for an implementation project:

Transformation model

DBMS model

The physical models capture all of the information that data architects and database admin-
istrators require to implement a logical model as a database system. The Transformation model is
also a project data model that describes a portion of an overall data structure supported by a single
automation effort. Individual projects within a business area are supported, allowing the modeler to
separate a larger area model into subject areas. Subject areas can be developed, reported on, and
generated to the database in isolation from the area model and other subject areas in the model.

This section contains the following topics

Objective
Support for the Roles of the Physical Model
Denormalization

Physical Models

Data Modeling Overview Guide 113

Objective

The objective of a physical model is to provide a database administrator with sufficient information
to create an efficient physical database. The physical model also provides a context for the defin-
ition and recording (in the data dictionary) of the data elements that form the database, and assists
the application team in choosing a physical structure for the programs that will access the data. To
ensure that all information system needs are met, physical models are often developed jointly by a
team representing the data administration, database administration, and application development
areas.

When it is appropriate for the development effort, the model can also provide the basis for com-
paring the physical database design against the original business information requirements to:

Demonstrate that the physical database design adequately supports those requirements.

Document physical design choices and their implications, such as what is satisfied, and
what is not.

Identify database extensibility capabilities and constraints.

Objective

Data Modeling Overview Guide 114

Support for the Roles of the Physical Model

Support is provided for both roles of a physical model:

Generating the physical database

Documenting physical design against the business requirements

For example, in a logical/physical model, you can create a physical model from an ERD, key-
based, or fully attributed model simply by changing the view of the model from Logical Model to
Physical Model. Each option in the logical model has a corresponding option in the physical model.
Therefore, each entity becomes a relational table, attributes become columns, and keys become
indices.

Once the physical model is created, you can generate all model objects in the correct syntax for
the selected target server directly to the catalog of the target server, or indirectly as a schema DDL
script file.

Support for the Roles of the Physical Model

Data Modeling Overview Guide 115

Summary of Logical and Physical Model Components

The following table summarizes the relationship between objects in a logical and a physical model:

Logical Model Physical Model

Entity Table

Dependent entity Foreign Key is part of the child table's Primary
Key

Independent entity Parent table or, if it is a child table, Foreign Key
is NOT part of the child table's Primary Key

Attribute Column

Logical datatype (text,
number, datetime, blob)

Physical datatype (valid example varies
depending on the target server selected)

Domain (logical) Domain (physical)

Primary key Primary key, Primary Key Index

Foreign key Foreign key, Foreign Key Index

Alternate key (AK) Alternate Key Index-a unique, non-primary
index

Inversion entry (IE) Inversion entry Index-a non-unique index cre-
ated to search table information by a non-
unique value, such as customer last name.

Key group Index

Business rule Trigger or stored procedure

Validation rule Constraint

Relationship Relationship implemented using Foreign Keys

Identifying relationship Foreign Key is part of the child table's Primary

Summary of Logical and Physical Model Components

Data Modeling Overview Guide 116

Key (above the line)

Non-identifying rela-
tionship

Foreign Key is NOT part of the child table's
Primary Key (below the line)

Subtype relationship Denormalized tables

Many-to-many rela-
tionship

Associative table

Referential Integrity rela-
tionship (Cascade,
Restrict, Set Null, Set
Default)

INSERT, UPDATE, and DELETE Triggers

Cardinality relationship INSERT, UPDATE, and DELETE Triggers

N/A View or view relationship

N/A Prescript or postscript

Referential integrity is a part of the logical model, since the decision about how to maintain a rela-
tionship is a business decision. Referential integrity is also a physical model component, since trig-
gers or declarative statements appear in the schema. Referential integrity is supported as a part of
both the logical and physical models.

Summary of Logical and Physical Model Components

Data Modeling Overview Guide 117

Denormalization

You can also denormalize the structure of the logical model, or allow data redundancy in a table to
improve query performance so that you can build a related physical model that is designed effect-
ively for the target RDBMS. Features supporting denormalization include:

Logical only properties for entities, attributes, key groups, and domains. You can mark any
item in the logical model logical only so that it appears in the logical model, but does not
appear in the physical model. For example, you can use the logical only settings to denor-
malize subtype relationships or support partial key migration in the physical model.

Physical only properties for tables, columns, indexes, and domains. You can mark any item
in the physical model physical only so that it appears in the physical model only. This setting
also supports denormalization of the physical model since it enables the modeler to include
tables, columns, and indexes in the physical model that directly support physical imple-
mentation requirements.

Resolution of many-to-many relationships in a physical model. Support for resolving many-
to-many relationships is provided in both the logical and physical models. If you resolve the
many-to-many relationship in the logical model, the associative entity is created and lets you
add additional attributes. If you choose to keep the many-to-many relationship in the logical
model, you can still resolve the relationship in the physical model. The link is maintained
between the original logical design and the new physical design, so the origin of the asso-
ciative table is documented in the model.

Denormalization

Data Modeling Overview Guide 118

Classification of Dependent Entities

The following table lists the types of dependent entities that may appear in an IDEF1X diagram:

Dependent
Entity Type

Description Example

Characteristic A characteristic entity rep-
resents a group of attributes
that occur multiple times for an
entity, and is not directly iden-
tified by any other entity. In the
example, HOBBY is a char-
acteristic of PERSON.

Associative or
Designative

Associative and designative
entities record multiple rela-
tionships between two or more
entities. If the entity carries only
the relationship information, it
is termed a designative entity. If
it also carries attributes that fur-
ther describe the relationship, it
is called an associative entity.
In the example, ADDRESS-
USAGE is an associative or
designative entity.

Subtype Subtype entities are the
dependent entities in a subtype
relationship. In the example,
CHECKING-ACCOUNT,
SAVINGS-ACCOUNT, and
LOAN-ACCOUNT are subtype
entities.

Classification of Dependent Entities

Data Modeling Overview Guide 119

Glossary
This section contains the following topics:

alternate key
attribute
basename
binary relationship
BLOB
cardinality
complete subtype cluster
dependent entity
denormalization
discriminator
domain
entity
foreign key
identifying relationship
incomplete subtype cluster
independent entity
inversion entry
logical model
logical/physical model
non-key attribute
non-identifying relationship
non-specific relationship
normalization
physical model
primary key
referential integrity
rolename
schema
specific relationship
subtype entity
subtype relationship

Glossary

Data Modeling Overview Guide 120

alternate key

An attribute or attributes that uniquely identify an instance of an entity.

If more than one attribute or group of attributes uniquely identify an instance of an
entity, the alternate keys are those attributes or groups of attributes not selected as
the primary key. A unique index for each alternate key is generated.
attribute

Represents a type of characteristic or property associated with a set of real or abstract things
(people, places, events, and so on).
basename

The original name of a rolenamed foreign key.
binary relationship

A relationship where exactly one instance of the parent is related to zero, one, or more
instances of a child. In IDEF1X, identifying, non-identifying, and subtype relationships
are all binary relationships.
BLOB

A dbspace that is reserved for storage of the byte and text data that makes up binary
large objects, or BLOBs, stored in table columns. The BLOB dbspace can hold
images, audio, video, long text blocks, or any digitized information.
cardinality

The ratio of instances of a parent to instances of a child. In IDEF1X, the cardinality of
binary relationships is 1:n, where n can be one of the following:

Zero, one, or more (signified by a blank space)

One or more (signified by the letter P)

Zero or one (signified by the letter Z)

Exactly n (where n is some number)
complete subtype cluster

If the subtype cluster includes all of the possible subtypes (every instance of the gen-
eric parent is associated with one subtype), then the subtype cluster is complete. For
example, every ACCOUNT is either a checking, savings, or loan account and there-
fore the subtype cluster of CHECKING-ACCOUNT, SAVINGS-ACCOUNT, or LOAN-
ACCOUNT is a complete subtype cluster.
dependent entity

An entity whose instances cannot be uniquely identified without determining its rela-
tionship to another entity or entities.

Glossary

Data Modeling Overview Guide 121

denormalization

To allow data redundancy in a table to improve query performance.
discriminator

The value of an attribute in an instance of the generic parent determines to which of
the possible subtypes that instance belongs. This attribute is known as the dis-
criminator. For example, the value in the attribute “account-type” in an instance of
ACCOUNT determines to which particular subtype (CHECKING-ACCOUNT,
SAVINGS-ACCOUNT, or LOAN-ACCOUNT) that instance belongs.
domain

A group of predefined logical and physical property characteristics that can be saved,
selected, and then attached to attributes and columns.
entity

An entity represents a set of real or abstract things (people, places, events, and so on)
that have common attributes or characteristics. Entities can be either independent or
dependent.
foreign key

An attribute that has migrated through a relationship from a parent entity to a child
entity. A foreign key represents a secondary reference to a single set of values; the
primary reference is the owned attribute.
identifying relationship

A relationship where an instance of the child entity is identified through its association
with a parent entity. The primary key attributes of the parent entity become primary
key attributes of the child.
incomplete subtype cluster

If the subtype cluster does not include all of the possible subtypes (every instance of
the generic parent is not associated with one subtype), then the subtype cluster is
incomplete. For example, if some employees are commissioned, a subtype cluster of
SALARIED-EMPLOYEE and PART-TIME EMPLOYEE is incomplete.
independent entity

An entity whose instances can be uniquely identified without determining its rela-
tionship to another entity.
inversion entry

An attribute or attributes that do not uniquely identify an instance of an entity, but are
often used to access instances of entities. A non-unique index for each inversion entry
is generated.

Glossary

Data Modeling Overview Guide 122

logical model

The data modeling level where you create a conceptual model that contains objects
such as entities, attributes, and key groups.
logical/physical model

A model type created where the logical and physical models are automatically linked.
non-key attribute

Any attribute that is not part of the entity’s primary key. Non-key attributes can be part
of an inversion entry or alternate key, and can also be foreign keys.
non-identifying relationship

A relationship where an instance of the child entity is not identified through its asso-
ciation with a parent entity. The primary key attributes of the parent entity become
non-key attributes of the child.
non-specific relationship

Both parent-child connection and subtype relationships are considered specific rela-
tionships since they define precisely how instances of one entity relate to instances of
another. However, in the initial development of a model, it is often helpful to identify
non-specific relationships between two entities. A non-specific relationship, also
referred to as a many-to-many relationship, is an association between two entities
where each instance of the first entity is associated with zero, one, or many instances
of the second entity and each instance of the second entity is associated with zero,
one, or many instances of the first entity.
normalization

The process by which data in a relational construct is organized to minimize redund-
ancy and non-relational constructs.
physical model

The data modeling level where you add database and database management system
(DBMS) specific modeling information such as tables, columns, and datatypes.
primary key

An attribute or attributes that uniquely identify an instance of an entity. If more than
one attribute or group of attributes can uniquely identify each instance, the primary key
is chosen from this list of candidates based on its perceived value to the business as
an identifier. Ideally, primary keys should not change over time and should be as small
as possible. A unique index for each primary key is generated.
referential integrity

Glossary

Data Modeling Overview Guide 123

The assertion that the foreign key values in an instance of a child entity have cor-
responding values in a parent entity.
rolename

A new name for a foreign key. A rolename is used to indicate that the set of values of
the foreign key is a subset of the set of values of the attribute in the parent, and per-
forms a specific function (or role) in the entity.
schema

The structure of a database. Usually refers to the DDL (data definition language) script
file. DDL consists of CREATE TABLE, CREATE INDEX, and other statements.
specific relationship

A specific relationship is an association between entities where each instance of the
parent entity is associated with zero, one, or many instances of the child entity, and
each instance of the child entity is associated with zero or one instance of the parent
entity.
subtype entity

There are often entities which are specific types of other entities. For example, a
SALARIED EMPLOYEE is a specific type of EMPLOYEE. Subtype entities are useful
for storing information that only applies to a specific subtype. They are also useful for
expressing relationships that are only valid for that specific subtype, such as the fact
that a SALARIED EMPLOYEE qualifies for a certain BENEFIT, while a PART-TIME-
EMPLOYEE does not. In IDEF1X, subtypes within a subtype cluster are mutually
exclusive.
subtype relationship

A subtype relationship (also known as a categorization relationship) is a relationship
between a subtype entity and its generic parent. A subtype relationship always relates
one instance of a generic parent with zero or one instance of the subtype.

Glossary

	Introduction
	Benefits of Data Modeling
	Methods
	Typographical Conventions

	Information Systems, Databases, and Models
	Data Modeling
	Data Modeling Sessions
	Session Roles

	Sample IDEF1X Modeling Methodology
	Modeling Architecture
	Logical Models
	Entity Relationship Diagram
	Key-Based Model
	Fully-Attributed Model

	Physical Models
	Transformation Model
	DBMS Model

	Logical Models
	Constructing a Logical Model
	Entity Relationship Diagram
	Entities and Attributes Defined
	Logical Relationships
	Many-to-Many Relationships

	Logical Model Design Validation
	Data Model Example

	The Key-Based Data Model
	Key Types
	Entity and Non-Key Areas

	Primary Key Selection
	Alternate Key Attributes
	Inversion Entry Attributes
	Relationships and Foreign Key Attributes
	Dependent and Independent Entities
	Identifying Relationships
	Nonidentifying Relationships
	Rolenames

	Naming and Defining Entities and Attributes
	Entity and Attribute Names
	Synonyms, Homonyms, and Aliases

	Entity Definitions
	Descriptions
	Business Examples
	Comments

	Business Glossary Construction

	Attribute Definitions
	Validation Rules

	Rolenames
	Definitions and Business Rules

	Relationships
	Relationship Cardinality
	Cardinality in Nonidentifying Relationships

	Referential Integrity
	RI, Cardinality, and Identifying Relationships

	Additional Relationship Types
	Many-to-Many Relationships
	N-ary Relationships
	Recursive Relationships
	Subtype Relationships
	Complete Compared to Incomplete Subtype Structures
	Benefits of Data Modeling
	IDEF1X and IE Subtype Notation
	When to Create a Subtype Relationship

	Normalization Problems and Solutions
	Normalization
	Overview of the Normal Forms
	Common Design Problems
	Repeating Data Groups
	Multiple Use of the Same Attribute
	Multiple Occurrences of the Same Fact
	Conflicting Facts
	Derived Attributes
	Missing Information

	Unification
	How Much Normalization Is Enough
	Support for Normalization
	First Normal Form Support
	Second and Third Normal Form Support

	Physical Models
	Objective
	Support for the Roles of the Physical Model
	Summary of Logical and Physical Model Components

	Denormalization

	Classification of Dependent Entities
	Glossary

